992 resultados para EXPERIMENTAL REALIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrostatic mechanism for the flocculation of charged particles by polyelectrolytes of opposite charge is proposed. The difference between this and previous electrostatic coagulation mechanisms is the formation of charged polyion patches on the oppositely charged surfaces. The size of a patch is primarily a function of polymer molecular weight and the total patch area is a function of the amount of polymer adsorbed. The theoretical predictions of the model agree with the experimental dependence of the polymer dose required for flocculation on polymer molecular weight and solution ionic strength.

A theoretical analysis based on the Derjaguin-Landau, Verwey- Overbeek electrical double layer theory and statistical mechanical treatments of adsorbed polymer configurations indicates that flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge does not occur by the commonly accepted polymerbridge mechanism.

A series of 1, 2-dimethyl-5 -vinylpyridinium bromide polymers with a molecular weight range of 6x10^3 to 5x10^6 was synthesized and used to flocculate dilute polystyrene latex and silica suspensions in solutions of various ionic strengths. It was found that with high molecular weight polymers and/or high ionic strengths the polymer dose required for flocculation is independent of molecular weight. With low molecular weights and/or low ionic strengths, the flocculation dose decreases with increasing molecular weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.

In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.

As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.

Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity of selectively-introduced edge dislocations in 99.999 percent pure copper crystals has been measured as a function of stress at temperatures from 66°K to 373°K by means of a torsion technique. The range of resolved shear stress was 0 to 15 megadynes/ cm^2 for seven temperatures (66°K, 74°K, 83°K, 123°K, 173°K, 296°K, 296°K, 373°K.

Dislocation mobility is characterized by two distinct features; (a) relatively high velocity at low stress (maximum velocities of about 9000 em/sec were realized at low temperatures), and (b) increasing velocity with decreasing temperature at constant stress.

The relation between dislocation velocity and resolved shear stress is:

v = v_o(τ_r/τ_o)^n

where v is the dislocation velocity at resolved shear stress τ_r, v_o is a constant velocity chosen equal to 2000 cm/ sec, τ_o is the resolved shear stress required to maintain velocity v_o, and n is the mobility coefficient. The experimental results indicate that τ_o decreases from 16.3 x 10^6 to 3.3 x 10^6 dynes/cm^2 and n increases from about 0.9 to 1.1 as the temperature is lowered from 296°K to 66°K.

The experimental dislocation behavior is consistent with an interpretation on the basis of phonon drag. However, the complete temperature dependence of dislocation mobility could not be closely approximated by the predictions of one or a combination of mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-pulse stimulated radiation of dense (10^9/cm^3 < ne ≤ 10^(11) /cm^3) nonuniform neon and argon afterglow plasma columns longitudinally immersed in a magnetic field is studied. The magnetic field is very homogeneous over the plasma volume (∆B/B~.01%). If the S-band microwave pulses' center frequency is such that they resonantly excite a narrow band of plasma upper hybrid oscillations close to the maximum upper hybrid frequency of the column, strong two pulse echoes are observed. This new echo process is called the upper hybrid echo. The echo spectrum, echo power and echo width were studied as a function of the pulse peak power P, pulse separation τ, relative density (ω_(po)/ω)^2, and relative cyclotron frequency (ω_c/ω). The complex but systematic variations of the echo properties as a function of the above-mentioned parameters arc found to be in qualitative agreement with those predicted by a theory of Gould and Blum based upon a simple nonuniform unidimensional cold plasma slab model. The possible effects of electron neutral and electron ion collisions not retained in the theoretical model are discussed.

The existence of a new type of cyclotron echo, different from that of Hill and Kaplan and not predicted by the Blum and Gould model is documented. It is believed to be also of a collective effect nature and can probably be described in terms of a theory retaining some hot plasma effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain accurate information from a structural tool it is necessary to have an understanding of the physical principles which govern the interaction between the probe and the sample under investigation. In this thesis a detailed study of the physical basis for Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is presented. A single scattering formalism of EXAFS is introduced which allows a rigorous treatment of the central atom potential. A final state interaction formalism of EXAFS is also discussed. Multiple scattering processes are shown to be significant for systems of certain geometries. The standard single scattering EXAFS analysis produces erroneous results if the data contain a large multiple scattering contribution. The effect of thermal vibrations on such multiple scattering paths is also discussed. From symmetry considerations it is shown that only certain normal modes contribute to the Debye-Waller factor for a particular scattering path. Furthermore, changes in the scattering angles induced by thermal vibrations produces additional EXAFS components called modification factors. These factors are shown to be small for most systems.

A study of the physical basis for the determination of structural information from EXAFS data is also presented. An objective method of determining the background absorption and the threshold energy is discussed and involves Gaussian functions. In addition, a scheme to determine the nature of the scattering atom in EXAFS experiments is introduced. This scheme is based on the fact that the phase intercept is a measure of the type of scattering atom. A method to determine bond distances is also discussed and does not require the use of model compounds or calculated phase shifts. The physical basis for this method is the absence of a linear term in the scattering phases. Therefore, it is possible to separate these phases from the linear term containing the distance information in the total phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents experimental measurements of the rheological behavior of liquid-solid mixtures at moderate Reynolds (defined by the shear rate and particle diameter) and Stokes numbers, ranging from 3 ≤ Re ≤ 1.6 × 103 and 0.4 ≤ St ≤ 195. The experiments use a specifically designed Couette cylindrical rheometer that allows for probing the transition from transporting a pure liquid to transporting a dense suspension of particles. Measurements of the shear stress are presented for a wide range of particle concentration (10 to 60% in volume) and for particle to fluid density ratio between 1 and 1.05. The effective relative viscosity exhibits a strong dependence on the solid fraction for all density ratios tested. For density ratio of 1 the effective viscosity increases with Stokes number (St) for volume fractions (φ) lower than 40% and becomes constant for higher φ. When the particles are denser than the liquid, the effective viscosity shows a stronger dependance on St. An analysis of the particle resuspension for the case with a density ratio of 1.05 is presented and used to predict the local volume fraction where the shear stress measurements take place. When the local volume fraction is considered, the effective viscosity for settling and no settling particles is consistent, indicating that the effective viscosity is independent of differences in density between the solid and liquid phase. Shear stress measurements of pure fluids (no particles) were performed using the same rheometer, and a deviation from laminar behavior is observed for gap Reynolds numbers above 4× 103, indicating the presence of hydrodynamic instabilities associated with the rotation of the outer cylinder. The increase on the effective viscosity with Stokes numbers observed for mixtures with φ ≤ 30% appears to be affected by such hydrodynamic instabilities. The effective viscosity for the current experiments is considerably higher than the one reported in non-inertial suspensions.