996 resultados para ELASTOMER-MODIFIED EPOXIES
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
A fluorescent anthracene-tagged DNA probe has been shown to respond to various DNA sequences by changes to its emission signal upon duplex formation. The fluorescence response for duplexes containing a single mismatch near the anthracene site has been found to be very sensitive to its composition, with the emission signal increasing for a CA mismatch and decreasing for CT and CC mismatches.
Resumo:
Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(gamma-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied in situ on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the
Resumo:
A series of four calix[5]arenes and three calix[6]arenes (R-calixarene-OCH2COR1) (R = H or Bu-t) with alkyl ketone residues (R-1 = Me or Bu-t) on the lower rim have been synthesized, and their affinity for complexation of alkali cations has been assessed through phase-transfer experiments and stability constant measurements. The conformations of these ketones have been probed by H-1 NMR and X-ray diffraction analysis, and by molecular mechanics calculations. Pentamer 3 (R R-1 = Bu-t) possesses a symmetrical cone conformation in solution and a very distorted cone conformation in the solid state. Pentamer 5 (R = H, R-1 = Bu-t) exists in a distorted 1,2-alternate conformation in the solid state, but in solution two slowly interconverting conformations, one a cone and the other presumed to be 1,2-alternate, can be detected. X-ray structure analysis of the sodium and rubidium perchlorate complexes of 3 reveal the cations deeply encapsulated by the ethereal and carbonyl oxygen atoms in distorted cone conformations which can be accurately reproduced by molecular mechanics calculations. The phase-transfer and stability constant data reveal that the extent of complexation depends on calixarene size and the nature of the alkyl residues adjacent to the ketonic carbonyls with tert-butyl much more efficacious than methyl.
Resumo:
The natural zeolite obtained from the Sivas-Yavu region in Turkey and iron modified forms were studied for the decomposition of N2O and selective catalytic reduction of N2O with NH3. The natural and iron modified zeolites were characterised by XRD, SEM, H-2-TPR, NH3-TPD and low temperature nitrogen sorption. The effect iron loading, precursor and valency on the catalytic performance of catalysts were studied. The catalytic activity of the zeolites increased up to about 7.0 wt.% Fe. Above this value, the activity decreased as a result of a reduction in the surface area and pore volume of the zeolite. The highest catalytic activity was observed using catalysts prepared with FeCl2 due to the formation of more reducible iron species in the zeolites. When FeSO4 was used as the iron precursor, sulphate remained on the surface even after extensive washing resulting in a decrease in the N2O decomposition activity and a shift the N2O reduction temperature to higher values. Since the natural and iron exchanged natural zeolites prepared using FeCl2 have comparable activity with synthetic zeolites, the offer a promising alternative catalyst for the abatement of N2O, particularly for the selective reduction of N2O with NH3. (C) 2011 Elsevier B.V. All rights reserved.