921 resultados para ELASTIC-MODULUS
Resumo:
The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.
Resumo:
Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of growth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.
Resumo:
High-quality AlInGaN quaternary layers were grown on c-Al2O3 using a thick GaN template. A full width at half maximum of 0.075 degrees from AlInGaN(0004) rocking curve and a minimum yield of 5.6% from Rutherford backscattering/channelling spectrometry (RBS) prove the AlInGaN layer of a comparable crystalline quality with GaN layers. The chemical compositions (both of Al and In contents) of AlInGaN layers are directly obtained from RBS and elastic recoil detection analysis. The lattice parameters both in perpendicular and parallel directions are deduced from X-ray diffraction. The AlInGaN layer is found to process a compressive strain in parallel direction and a tensile strain in perpendicular direction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A model has been proposed for describing elastic deformation of wafer surfaces in bonding. The change of the surface shape is studied on the basis of the distribution of the periodic strain field. With the condition of diminishing periodic strain away from the interface, Airy stress function has been found that satisfies the elastic mechanical equilibrium. The result reveals that the wavy interface elastically deforms a spatial wavelength from the interface. (C) 2000 American Institute of Physics. [S0021-8979(00)04219-5].