964 resultados para Digital Modelling
Resumo:
The focus of this special issue is upon notions, and experiences of, the erosion and blurring of the boundaries constructed between work, play, the public and private as related to digital media. We seek to increase knowledge regarding the contemporary experiences and potential reshaping of the boundaries and structures of existing social organisation, and the altering of the ways in which people learn to experience life. We know that even as access to digital technologies continues to vary based on age, gender, nationality, residence, ethnicity, work, and other key aspects of society, it is clear the presence and uses of these digital technologies are increasingly important features of contemporary life...
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
This paper investigates the effect of topic dependent language models (TDLM) on phonetic spoken term detection (STD) using dynamic match lattice spotting (DMLS). Phonetic STD consists of two steps: indexing and search. The accuracy of indexing audio segments into phone sequences using phone recognition methods directly affects the accuracy of the final STD system. If the topic of a document in known, recognizing the spoken words and indexing them to an intermediate representation is an easier task and consequently, detecting a search word in it will be more accurate and robust. In this paper, we propose the use of TDLMs in the indexing stage to improve the accuracy of STD in situations where the topic of the audio document is known in advance. It is shown that using TDLMs instead of the traditional general language model (GLM) improves STD performance according to figure of merit (FOM) criteria.
Resumo:
This research is focused on realizing productivity benefits for the delivery of transport infrastructure in the Australian construction industry through the use of building information modeling (BIM), virtual design and construction (VDC) and integrated project delivery (IPD). Specific objectives include: (I) building an understanding of the institutional environment, business systems and support mechanisms (e.g., training and skilling) which impact on the uptake of BIM/VDC; (II) gathering data to undertake a cross-country analysis of these environments; and (III) providing strategic and practical outcomes to guide the uptake of such processes in Australia. Activities which will inform this research include a review of academic literature and industry documentation, semi-formal interviews in Australia and Sweden, and a cross-country comparative analysis to determine factors affecting uptake and associated productivity improvements. These activities will seek to highlight the gaps between current-practice and best-practice which are impacting on widespread adoption of BIM/VDC and IPD. Early findings will be discussed with intended outcomes of this research being used to: inform a national public procurement strategy; provide guidelines for new contractual frameworks; and contribute to closing skill gaps. Keywords: building information modeling (BIM); virtual design and construction (VDC); integrated project delivery (IPD); transport infrastructure; Australia; procurement
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
The competent leadership of digital transformation needs to involve the board of directors. The reported lack of such capability in boards is becoming a pressing issue. A part of leadership in such transformation is the board of director’s competence to lead Enterprise Business Technology Governance (EBTG). In this paper we take the position that EBTG competencies are essential in boards, because competent EBTG has been shown to contribute to increased revenue, profit, and returns. We update and expand on the results of a multi-method approach to the development of a set of three board of director competencies needed for effective EBTG.
Resumo:
Annually, several million tonnes of waste are produced from reworks, demolition, and use of substandard materials. Building Information Modelling (BIM), a digital representation of facilities and their constituent data, is a viable means of addressing some concerns about the impacts of these processes. BIM functionalities can be extended and combined with rich building information from specifications and product libraries, for efficient, streamlined design and construction. This paper conceptualises a framework for BIM-knowledge transfer from advanced economies for adaptation and use in urban development works in developing nations using the Sydney Down Under and Lagos Eko Atlantic projects as reference points. We present a scenario that highlights BIM-based lifecycle planning/specifications as agents of sustainable construction (in terms of cost and time) crucial to the quality of as-built data from early on in city development. We show how, through the use of BIM, city planners in developing nations can avoid high, retrospective (and sometimes wasteful) maintenance costs and leapfrog infrastructure management standards of advanced economies. Finally, this paper illustrates how BIM can address concerns about economic sustainability during city development in developing countries by enriching model objects with specification information sourced from a product library.
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.
Resumo:
Australia has had two recent public apologies, one to the ‘ Stolen Generation’ of Aboriginal and Torres Strait Islander Australians and the second to the ‘Forgotten Australians' – people who had been removed from their parents as children and institutionalized. Both acts occurred in time when there was no Internet and peoples’ stories took years to collect and decades for their weight to carry the public momentum required to gain a public apology. Now, in a digital age, the reports and the testimonies held within them are available for all to read on the Internet. We all now know what happened and formal public apologies ensued. Both public apologies also draw attention to an emerging intersection between digital technologies, personal historical stories and public apology. Research has identified the potential of digital narrative, such as digital storytelling3 and videoed oral histories to assist in the production of digital narratives that can help to present the multiple voices and viewpoints of those affected by these subjects co-creatively (Burgess et al, pp.152-153). Not all Australians however have access or the skills to use digital tools so as to benefit from these technologies ⎯ especially Indigenous Australians. While the Federal Government is committed to helping Australians enjoy digital confidence and digital media literacy skills, experience inclusive digital participation and benefit through online engagement (Department of Broadband, communications and the Digital Economy, 2009) there are many initiatives that can also be undertaken locally by State funded institutions, such as libraries to assist. This paper highlights the outcomes of recent empirical projects undertaken at the State Library of Queensland (SLQ) in particular focusing on digital initiatives in Family History practices by Indigenous users, and a digital story project in response to the public apology to the Stolen Generation instigated by SLQ.
Resumo:
Quantum-like models can be fruitfully used to model attitude change in a social context. Next steps require data, and higher dimensional models. Here, we discuss an exploratory study that demonstrates an order effect when three question sets about Climate Beliefs, Political Affiliation and Attitudes Towards Science are presented in different orders within a larger study of n=533 subjects. A quantum-like model seems possible, and we propose a new experiment which could be used to test between three possible models for this scenario.
Resumo:
This paper examines the capacity of digital storytelling to document research activity in the creative and performing arts. In particular, it seeks to identify the thought processes and methods that underpin this research and to capture them using the digital storytelling medium. Interest in this issue was prompted by the author’s work with the creative and performing artists from the Queensland Conservatorium and the Queensland College of Art as part of the Federal government’s Research Quality Framework (RQF) in 2007. The RQF compelled artists to address what it means to undertake research in their disciplines, to describe this, measure it and quantify it; for many practitioners this represents a significant challenge. These issues continue to be pertinent in the context of the Excellence in Research for Australia (ERA) initiative. This research is significant because it seeks to identify, in layman’s terms, the research methods and thought processes used by artists in their research practice. It seeks to do so free of the encumbrances of the professional doctorate policies, the higher education research quality frameworks, and the dense philosophical debates that have to-date dominated discussions of this issue. The research involves qualitative data collection methods including a detailed literature review, interviews with key practitioners and academics involved in the creative and performing arts, and three case studies. The literature review focuses on publications that explore issues of research practice and method in the creative and performing arts. The case studies involve three Queensland-based artists. Digital stories will be developed (and presented) with Marcus and Mafe using their visual materials and drawing on the issues identified in the literature review and interviews. Emmerson’s DVD provided a point of comparison with the digital stories. (Brief bios are attached)
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.