995 resultados para Diffusive gradients in thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein is presented a novel chemical vapour deposition (CVD) route for the fabrication of oxide ferroelectrics. A versatile layer-by-layer growth mode was developed to prepare naturally super-latticed bismuth based materials belonging to the Aurivillius phase family, with which good control over composition and crystal structure was achieved. In chapter 3, the effect of epitaxial strain on one of the very simple oxide materials TiO2 was studied. It has been found that the ultra-thin TiO2 films demonstrate ferroelectric behaviour when grown on NdGaO3 substrates. TiO2 exists in various crystal phases, but none of them show ferroelectric behaviour. The epitaxial strain due to the substrate, changes the crystal structure from tetragonal to orthorhombic which in turn leads to ferroelectric behaviour. In chapter 4, a unique growth method for multiferroic BiFeO3 (BFO) thin films is shown, where a phase pure BFO thin films can be prepared even in the presence of excess bismuth precursor during the growth process. This type of growth is usually called adsorption controlled growth and can be used for growing various bismuth containing compounds, where the volatility of bismuth can create various types of defects. Chapter 5 describes the growth of Bi4Ti3O12 thin films in a layer-by-layer growth mode. In this section, the effect of Bi and Ti precursor flows on the growth of thin films is discussed and it is shown that how change in precursor flows leads to out-ofphase boundary defects during the layer-by-layer growth mode. In chapter 6, the growth of a compound Bi5Ti3FeO15, which is a 1:1 mixture of BiFeO3 and Bi4Ti3O12, is presented. The growth mechanism of Bi5Ti3FeO15 thin films is presented, where the Fe precursor flow was controlled from zero to the insertion of one full BiFeO3 perovskite unit cell into the Bi4Ti3O12 structure in addition, the effect of iron precursor flow on crystalline properties is demonstrated. The methods presented in this thesis can be adopted to grow ferroelectric and multiferroic films for industrial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper is the main interconnect material in microelectronic devices, and a 2 nm-thick continuous Cu film seed layer needs to be deposited to produce microelectronic devices with the smallest features and more functionality. Atomic layer deposition (ALD) is the most suitable method to deposit such thin films. However, the reaction mechanism and the surface chemistry of copper ALD remain unclear, which is deterring the development of better precursors and design of new ALD processes. In this thesis, we study the surface chemistries during ALD of copper by means of density functional theory (DFT). To understand the effect of temperature and pressure on the composition of copper with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low temperature while the silicide phases are stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good agreement with experimental observations. Understanding the precursor adsorption on surfaces is important for understanding the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. We found that the adsorption energies and adsorption geometries are dependent on the adsorption sites and on the method used to include vdW in the DFT calculation. Both precursor molecules are partially decomposed and the Cu cations are partially reduced in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond is one of the requirements for selecting precursors for ALD of metals. 2 Bonding between surface and an atom in the ligand which is not coordinated with the Cu may result in impurities in the thin film. To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we proposed reaction pathways based on activation energies and reaction energies for a range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and desorption steps are found to be extremely exothermic, explaining the ALD reaction scheme of original experimental work. Endothermic ligand diffusion and re-ordering steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. This may lead to very slow growth rate, as was the case in the experimental work. By investigating the reduction of CuO to metallic Cu, we elucidated the role of the reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from reduction during vacuum annealing by the CuO surface and that H2 is required in order to reduce that surface, which shows that the strength of reducing agent is important to obtain fully reduced metal thin films during indirect ALD processes. Overall, in this thesis, we studied the surface chemistries and reaction mechanisms of Cu ALD processes and the nucleation of Cu to form a thin film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed Laser Deposition (PLD) was used to make Au/(Ba0.5Sr0.5)TiO3/(La0.5Sr0.5) CoO3/MgO thin film capacitor structures. Functional properties were studied with changing BST thickness from similar to1265 nm to similar to63 nm. The dielectric constant was found to decrease, and migration of T-m (the temperature at which the dielectric constant is maximum) to lower temperatures occurred as thickness was reduced. Curie-Weiss plots of the as-obtained dielectric data, indicated that the Curie temperature was also systemmatically progressively depressed. Further, fitting to expressions previously used to describe diffuse phase transitions suggested increased diffuseness in transformation behaviour as film thickness decreased. This paper discusses the care needed in interpreting the observations given above. We make particular distinction between the apparent Curie-temperature derived from Curie-Weiss plots of as-measured data, and the inherent Curie temperature determined after correction for the interfacial capacitance. We demonstrate that while the apparent Curie temperature decreases as thickness decreases, the inherent Curie temperature is thickness independent. Thickness-invariant phase transition behaviour is confirmed from analysis of polarisation loops, and from examination of the temperature dependence of the loss-tangent. We particularly note that correction of data for interfacial capacitance does not alter the position of T-m. We must therefore conclude that the position of T-m is not related simply to phase transformation behaviour in BST thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x = 0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform with out microcracks . The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size in dependent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11GHz as cobalt content increased from x = 0.1 to 0.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel route involving atmospheric pressure chemical vapour deposition (APCVD) is reported for coating Nb2O5 onto glass substrates via the reaction of NbCl5 and ethyl acetate at 400-660degreesC. Raman spectroscopy is shown to be a simple diagnostic tool for the analysis of these thin films. The contact angle of water on Nb2O5-coated glass drops on UV irradiation from 60degrees to 5-20degrees. XPS Analysis showed that the Nb:O ratio of the film was 1:2.5. Glancing angle X-ray diffraction showed that all films were crystalline, with only a single phase being observed; this has some preferred orientation in the (201) plane of Nb2O5. The niobium(V) oxide materials show minimal photocatalytic ability to degrade organic material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin (50-500 nm) films of TiO2 may be deposited on glass substrates by the atmospheric pressure chemical vapor deposition (APCVD) reaction of TiCl4 with ethyl acetate at 400600 C. The TiO2 films are exclusively in the form of anatase, as established by Raman microscopy and glancing angle X-ray diffraction. X-ray photoelectron spectroscopy gave a 1:2 Ti:O ratio with Ti 2P(3/2) at 458.6 eV and O 1s is at 530.6 eV. The water droplet contact angle drops from 60degrees to

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a study of the oxidative mineralisation of 4-CP by oxygen, sensitised by thin films of Degussa P25 TiO2, are reported. The films are used under conditions in which the kinetics of photomineralisation are independent of mass transfer effects and stable towards repeated irradiation. Using a TiO2 film, the process goes through the same mechanism as a TiO2 dispersion, generating the same intermediates, namely: 4-chlorocatechol and hydroquinone. The kinetics of photomineralisation show clear differences between a TiO2 film and a dispersion. With TiO2 films the initial rate of photomineralisation is strongly dependent upon photocatalyst loading, (units; g dm(-3)) reaching a distinct maximum, which appears to be associated with the formation of a monolayer of aggregated particles - the diameter of the aggregated particles is estimated as 0.44 mu m. A simple 2D model is presented to help illustrate the features of such a system. With TiO2 dispersions the rate usually reaches a plateau at ca. 0.5 g dm(-3) of TiO2. For TiO2 films the initial rate depends directly upon the incident light intensity, implying that the photocatalytically active particles are under low illumination conditions, partially shielded by the other particles making up each aggregated particle. In contrast, with TiO2 dispersions R-i depends upon I-0.64, implying that the different light intensities used spanned both the high (R(i)proportional to I-1/2) and low (R(i)proportional to I) intensity kinetic regions. The kinetics of photomineralisation of 4-CP, sensitised by TiO2 films obey the same Langmuir-Hinshelwood expressions as found in most semiconductor photocatalyst work conducted with TiO2 dispersions. However, in a study of the variation R-i as a function of [4-CP] and [O-2] the values for the maximum rates were larger, and those for the apparent Langmuir adsorption coefficients were smaller, than those found for TiO2 dispersions. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed laser deposition (PLD) from a hot pressed manganese doped ZnS target using a KrF laser, has produced a high rate deposition method for growing luminescent thin films. Good stoichiometric quality and typical luminescent crystal structures have been observed with a predominant hexagonal phase and little evidence of the cubic phase. The luminescent characteristics were determined by cathodoluminescence and photoluminescence excitation and stable electroluminescence was observed under pulsed dc conditions with a minimum brightness of 150 cd/m2. PLD film characteristics are compared with those observed in radio-frequency sputtered samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimization of interrelated deposition parameters during deposition of in situ YBa2Cu3O7 thin films on MgO substrates by KrF laser ablation was systematically studied in a single experimental chamber. The optimum condition was found to be a substrate temperature of 720-degrees-C and a target-substrate distance of 5 cm in an oxygen partial pressure of 100 mTorr. These conditions produced films with T(c) = 87 K. The presence of YO in the plasma plume was found to be important in producing good quality films. The films were characterized by resistance-temperature measurements, energy dispersive x-ray analyses, scanning electron microscopy, and x-ray-diffraction measurements, and the physical reasons underlying film quality degradation at parameter values away from optimal are discussed.