949 resultados para DRUG-RESISTANCE
Resumo:
Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.
Resumo:
1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.
Resumo:
Medication administration errors (MAE) are the most frequent kind of medication errors. Errors with antimicrobial drugs (AD) are relevant because they may interfere inpatient safety and in the development of microbial resistance. The aim of this study is to analyze the AD errors detected in a Brazilian multicentric study of MAE. It was a devcriptive and explorotory study carried out in clinical units in five Brazilian teaching hospitals. The hospitals were investigated during 30 days. MAE were detected by observation technique. MAE were classified in categories: wrong route(WR), wrong patient(WP), wrong dose(WD) wrong time (WT) and unordered drug (UD). AD with MA E were classified by Anatomical-Therapeutical-Chemical Classification System. AD with narrow therapeutic index (NTI) wet-e identified A descriptive statistical analysis was performed using SPSS version 11.5 software. A total of 1500 errors were observed, 277 (18.5%) of them were error with AD. The hopes of AD error were: WT87.7%, QD 6.9%, WR 1.5%, UD 3.2% and WP 0.7%. The number of AD found was 36. The mostly ATC class were fluoroquinolones 13.9%, combinations of penicillin 13.9%, macrolides 8.3% and third-generation cephalosporines 5.6%. The parenteral drug dosage form was associated with 55.6% of AD. 16.7% of AD were NTI. 47.4% of WD and 21.8% WT were with NTI drugs. This study shows that these errors should be considered potential areas for improvement in the medication process and patient safety plus there is requirement to develop rational drug use of AD.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both C. albicans and C. tropicalis, but phospholipase activity was noted only in C. albicans. In vitro resistance to antifungals was verified in both species, but C. tropicalis appears to be more resistant to the tested antifungals than C. albicans.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Resumo:
Objectives: Arthroconidia have been considered as the primary cause of infection by dermatophytes. However, the in vitro antifungal testing evaluates the responses mainly of microconidia or hyphae, and dermatophytes in vivo often produce arthroconidia, a cellular structure presumably more resistant to antifungals. The aim of this study was to compare the in vitro susceptibility of microconidia and arthroconidia of Trichophyton rubrum, Trichophyton tonsurans and Trichophyton equinum to griseofulvin, itraconazole, terbinafine, fluconazole, amphotericin B and hygromycin B. Methods: Microconidia and arthroconidia were produced in vitro, and their susceptibility to each drug was evaluated by assessing the CLSI M38-A broth microdilution method. Results: Arthroconidia of all strains analysed appeared to be more resistant to fluconazole, griseofulvin and itraconazole than microconidia. The MIC of terbinafine was the same for microconidia and arthroconidia for all strains, and the MIC of amphotericin B for microconidia and arthroconidia was the same for isolates of T. equinum and T. tonsurans, but differed for T. rubrum. Finally, the level of resistance of microconidia for all strains towards the antibiotic hygromycin B was from 25 to 400 mg/L. Conclusions: The difference in the susceptibility between microconidia and arthroconidia depends on the drug and on the strain, and may be one of the causes of therapeutic failure. Also, the level of resistance to the antibiotic hygromycin B presented by microconidia of these isolates will allow the use of hygromycin resistance as a dominant marker in fungal transformation procedures in future studies of gene function.
Resumo:
Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.
Resumo:
Background: The most primitive leukemic precursor in acute myeloid leukemia (AML) is thought to be the leukemic stem cell (LSC), which retains the properties of self-renewal and high proliferative capacity and quiescence of the hematopoietic stem cell. LSC seems to be immunophenotypically distinct and more resistant to chemotherapy than the more committed blasts. Considering that the multidrug resistance (MDR) constitutive expression may be a barrier to therapy in AML, we have investigated whether various MDR transporters were differentially expressed at the protein level by different leukemic subsets. Methods: The relative expression of the drug-efflux pumps P-gp, MRP, LRP, and BCRP was evaluated by mean fluorescence index (MFI) and the Kolmogorov-Smirnov analysis (D values) in five leukemic subpopulations: CD34(+)CD38(-)CD123(+) (LSCs), CD34(+)CD38(+)CD123(-), CD34(+)CD38(+)CD123(+), CD34(+)CD38(+)CD123(-), and CD34(-) mature cells in 26 bone marrow samples of CD34(+) AML cases. Results: The comparison between the two more immature subsets (LSC versus CD34(+)CD38(-)CD123(-) cells) revealed a higher P-gp, MRP, and LRP expression in LSCs. The comparative analysis between LSCs and subsets of intermediate maturation (CD34(+)CD38(+)) demonstrated the higher BCRP expression in the LSCs. In addition, P-gp expression was also significantly higher in the LSC compared to CD34(+)CD38(+)CD123(-) subpopulation. Finally, the comparative analysis between LSC and the most mature subset (CD34(-)) revealed higher MRP and LRP and lower P-gp expression in the LSCs. Conclusions: Considering the cellular heterogeneity of AML, the higher MDR transporters expression at the most immature, self-renewable, and quiescent LSC population reinforces that MDR is one of the mechanisms responsible for treatment failure. (C) 2008 Clinical Cytometry Society.
Resumo:
Cyclotides are a novel class of circular, disulfide-rich peptides (similar to 30 amino acids) that display a broad range of bioactivities and have exceptionally high stability. Their physical properties, which include resistance to thermal and enzymatic degradation, can be attributed to their unique cyclic backbone and knotted arrangement of disulfide bonds. The applicability of linear peptides as drugs is potentially limited by their susceptibility to proteolytic cleavage and poor bioavailability. Such limitations may be overcome by using the cyclotide framework as a scaffold onto which new activities may be engineered. The potential use of cyclotides for drug design is evaluated here, with reference to rapidly increasing knowledge of natural cyclotides and the emergence of new techniques in peptide engineering.
Resumo:
Resumo: A decisão da terapêutica hormonal no tratamento do cancro da mama baseiase na determinação do receptor de estrogénio alfa por imunohistoquímica (IHC). Contudo, a presença deste receptor não prediz a resposta em todas as situações, em parte devido a limitações do método IHC. Investigámos se a expressão dos genes ESR1 e ESR2, bem como a metilação dos respectivos promotores, pode estar relacionada com a evolução desfavorável de uma proporção de doentes tratados com tamoxifeno assim como com a perda dos receptores de estrogénio alfa (ERα) e beta (ERß). Amostras de 211 doentes com cancro da mama diagnosticado entre 1988 e 2004, fixadas em formalina e preservadas em parafina, foram utilizadas para a determinação por IHC da presença dos receptores ERα e ERß. O mRNA total do gene ESR1 e os níveis específicos do transcrito derivado do promotor C (ESR1_C), bem como dos transcritos ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 foram avaliados por Real-time PCR. Os promotores A e C do gene ESR1 e os promotores 0K e 0N do gene ESR2 foram investigados por análise de metilação dos dinucleotidos CpG usando bisulfite-PCR para análise com enzimas de restrição, ou para methylation specific PCR. Atendendo aos resultados promissores relacionados com a metilação do promotor do gene ESR1, complementamos o estudo com um método quantitativo por matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) suportado pelo software Epityper para a medição da metilação nos promotores A e C. Fez-se a avaliação da estabilidade do mRNA nas linhas celulares de cancro da mama MCF-7 e MDA-MB-231 tratadas com actinomicina D. Baixos níveis do transcrito ESR1_C associaram-se a uma melhor sobrevivência global (p = 0.017). Níveis elevados do transcrito ESR1_C associaram-se a uma resposta inferior ao tamoxifeno (HR = 2.48; CI 95% 1.24-4.99), um efeito mais pronunciado em doentes com tumores de fenótipo ERα/PgR duplamente positivo (HR = 3.41; CI 95% 1.45-8.04). A isoforma ESR1_C mostrou ter uma semi-vida prolongada, bem como uma estrutura secundária da região 5’UTR muito mais relaxada em comparação com a isoforma ESR1_A. A análise por Western-blot mostrou que ao nível da 21 proteína, a selectividade de promotores é indistinguivel. Não se detectou qualquer correlação entre os níveis das isoformas do gene ESR2 ou entre a metilação dos promotores do gene ESR2, e a detecção da proteína ERß. A metilação do promotor C do gene ESR1, e não do promotor A, foi responsável pela perda do receptor ERα. Estes resultados sugerem que os níveis do transcrito ESR1_C sejam usados como um novo potencial marcador para o prognóstico e predição de resposta ao tratamento com tamoxifeno em doentes com cancro da mama. Abstract: The decision of endocrine breast cancer treatment relies on ERα IHC-based assessment. However, ER positivity does not predict response in all cases in part due to IHC methodological limitations. We investigated whether ESR1 and ESR2 gene expression and respective promoter methylation may be related to non-favorable outcome of a proportion of tamoxifen treated patients as well as to ERα and ERß loss. Formalin-fixed paraffin-embedded breast cancer samples from 211 patients diagnosed between 1988 and 2004 were submitted to IHC-based ERα and ERß protein determination. ESR1 whole mRNA and promoter C specific transcript levels, as well as ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 transcripts were assessed by real-time PCR. ESR1 promoters A and C, and ESR2 promoters 0N and 0K were investigated by CpG methylation analysis using bisulfite-PCR for restriction analysis, or methylation specific PCR. Due to the promising results related to ESR1 promoter methylation, we have used a quantification method by matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDITOF MS) together with Epityper software to measure methylation at promoters A and C. mRNA stability was assessed in actinomycin D treated MCF-7 and MDA-MB-231 cells. ERα protein was quantified using transiently transfected breast cancer cells. Low ESR1_C transcript levels were associated with better overall survival (p = 0.017). High levels of ESR1_C transcript were associated with non-favorable response in tamoxifen treated patients (HR = 2.48; CI 95% 1.24-4.99), an effect that was more pronounced in patients with ERα/PgR double-positive tumors (HR = 3.41; CI 95% 1.45-8.04). The ESR1_C isoform had a prolonged mRNA half-life and a more relaxed 5’UTR structure compared to ESR1_A isoform. Western-blot analysis showed that at protein level, the promoter selectivity is undistinguishable. There was no correlation between levels of ESR2 isoforms or ESR2 promoter methylation and ERß protein staining. ESR1 promoter C CpG methylation and not promoter A was responsible for ERα loss. We propose ESR1_C levels as a putative novel marker for breast cancer prognosis and prediction of tamoxifen response.
Resumo:
In order to study the chemoresistance of Plasmodium falciparum to commonly used antimalarial drugs in Brazil the authors have studied ten patients with falciparum malaria, acquired in the Brazilian Amazon region. Patients were submitted to in vivo study of drug sensitivity, after chemotherapy with either 4-aminoquinolines (chloroquine or amodiaquine) or quinine. Adequate drug absorption was confirmed by standard urine excretion tests for antimalarials. Eight patients could be followed up to 28 days. Among these in vivo resistance (R I and R II responses) was seen in all patients who received 4-amino-quinolines. One patient treated with quinine exhibited a R III response. Peripheral blood samples of the same patients were submitted to in vitro microtests for sensitivity to antimalarials. Out of nine successful tests, resistance to chloroquine and amodiaquine was found in 100% and resistance to quinine in 11.11% of isolates. Probit analysis of log dose-response was used to determine effective concentrations EC50, EC90 and EC99 to the studied drugs. Good correlation between in vivo and in vitro results was seen in six patients. The results emphasize high levels of P. falciparum resistance to 4- aminoquinolines and suggest an increase in resistance to quinine in the Brazilian Amazon region, reinforcing the need for continuous monitoring of drug sensitivity to adequate chemotherapy according to the most efficacious drug regimens