967 resultados para Cosmic Microwave
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
This paper presents an analysis of a reconfigurable patch filter based on a triple-mode circular patch resonator with four radial slots. The analysis has been carried out thanks to the development of a new theoretical approach of the tunable patch filter based on the coupling matrix. The coefficients of the coupling matrix related to the tunable behavior have been identified and some rules for their evolution have been derived. For a proof-of-concept, a bandpass filter has been designed with a continuous tunability obtained with varactors connected across the slots. State-of-the-art results have been obtained, with a frequency tuning range of 27% from 1.95 to 2.43 GHz and a change in fractional bandwidth from 8.5% to 31.5% for the respective frequencies. In the entire tuning range, the return loss is better than 10 dB and the maximum insertion loss is 2 dB. Due to the newly developed coupling matrix, measurements, simulations, and theory showed great agreement.
Resumo:
This article presents a triple-mode bandpass filter using a modified circular patch resonator. Etched slots in the resonator split the TM(1, 1, 0)(z) degenerate fundamental modes and also perturb the TM(2, 1, 0)(z) mode, approximating their resonant frequencies to form a third-order bandpass filter. A 2.42 GHz centered filter was designed and fabricated. Experimental results showed a fractional bandwidth of 29%, return loss better than 16 dB, insertion loss of 0.5 dB, and good second harmonic band rejection. The filter exhibited a size reduction of 51% compared with a filter using an unperturbed circular patch resonator at the same frequency. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 178-182, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23950
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The scaled-up preparation of 1H-pyrazole, 1-phenylpyrazole and isoxazole via sonocatalysis is reported. The products were isolated in good yields in short time reaction. These compounds had been assayed for antioxidant activity by ORAC and DPPH methodologies. The results showed that only 1-phenylpyrazole presented good antioxidant activity compared with Trolox(R).
Resumo:
The high efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates 3 with 5-iodo-1,3-dioxin-4-ones 2a-b in water as only solvent in the presence of n-Bu(4)NOH as base is reported. The respective 5-aryl-1,3-dioxin-4-ones 4a-n were obtained in good to excellent yields. The catalyst system provides high efficiency at low load using electronically diverse coupling partners. The obtained 2,2,6-trimethyl-5-aryl-1,3-dioxin-4-ones were transformed into corresponding alpha-aryl-beta-ketoesters 6 by reaction with an alcohol in the absence of solvent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
Uranium is a natural radioactive metallic element; its effect on the organism is cumulative, and chronic exposure to this element can induce carcinogenesis. Three cities of the Amazon region-Monte Alegre, Prainha, and Alenquer-in North Brazil, are located in one of the largest uranium mineralization areas of the world. Radon is a radioactive gas, part of uranium decay series and readily diffuses through rock. In Monte Alegre, most of the houses are built of rocks removed from the Earth`s crust in the forest, where the uranium reserves lie. The objective of the present work is to determine the presence or absence of genotoxicity and risk of carcinogenesis induced by natural exposure to uranium and radon in the populations of these three cities. The frequency of micronuclei (MN) and chromosomal aberrations (CA) showed no statistically significant differences between the control population and the three study populations (P > 0.05). MN was also analyzed using the fluorescence in situ hybridization (FISH) technique, with a centromere-specific probe. No clastogenic and/or aneugenic effects were found in the populations. Using FISH analysis, other carcinogenesis biomarkers were analyzed, but neither the presence of the IGH/BCL2 translocation nor an amplification of the MYC gene and 22q21 region was detected. Clastogenicity and DNA damage were also not found in the populations analyzed using the alkaline comet assay. The mitotic index showed no cytotoxicity in the analyzed individuals` lymphocytes. Once we do not have data concerning radiation doses from other sources, such as cosmic rays, potassium, thorium, or anthropogenic sources, it is hard to determine if uranium emissions in this geographic region where our study population lives are too low to cause significant DNA damage. Regardless, genetic analyses suggest that the radiation in our study area is not high enough to induce DNA alterations or to interfere with mitotic apparatus formation. It is also possible that damages caused by radiation doses undergo cellular repair.
Resumo:
This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.
Resumo:
We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.
Resumo:
Curing of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone (DGEBA/DDS) epoxy resin has been effected by heating with radio frequency (RF) radiation at frequencies of 30-99 MHz. The epoxy resins can be cured rapidly at low RF power levels. Comparison of the kinetics of the RF curing with thermal curing while maintaining the same curing temperature revealed no differences. Previous differences in rates of thermal and microwave curing are believed to be due to lack of temperature control during microwave curing. For RF curing,the rate of cure, at constant power level, increases at lower RF frequency, thus emphasizing one of the principal advantages of RF curing over microwave curing. (C) 1999 John Wiley & Sons, Inc.
Resumo:
We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.
Resumo:
Superhyperfine interactions in inhomogeneously broadened paramagnetic centers are observed using a single high-turn-angle microwave pulse. The free induction signal that follows the hole-burning pulse exhibits oscillations that are distinct from the oscillatory free induction decay observable in some inhomogeneously broadened systems. It contains frequencies characteristic of the superhyperfine splittings, together with a zero frequency component. Experimental examples of the effect in both orientationally disordered (powdered) and structurally disordered (glassy) systems are presented and compared with the conceptually similar Fourier transform electron paramagnetic resonance detected nuclear magnetic resonance experiment, together with numerical simulations. (C) 2003 American Institute of Physics.