972 resultados para Contaminated


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ambiente, Saúde e Segurança, 23 de Abril de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os produtos farmacêuticos são substâncias químicas muito utilizados em medicina, veterinária e ainda na agricultura. Nos anos 90, foi descoberta a presença de fármacos em meio aquático, verificando-se que a sua remoção nas Estações de Tratamento de Águas Residuais (ETAR) não era completa. Durante as duas últimas décadas foi identificada a presença de mais de oitenta compostos no meio ambiente e actualmente são considerados poluentes emergentes. Podem contaminar solos e águas, depois de serem usados e excretados (inalterados ou metabolizados) por humanos e animais, ou quando são indevidamente lançados directamente no meio ambiente. Os estudos ecotoxicológicos efectuados com estes poluentes têm sido direccionados, sobretudo, para as águas, existindo uma ausência de trabalhos sobre solos. O Ibuprofeno (IB) é um anti-inflamatório não esteróide, utilizado também como analgésico e antipirético, sendo um dos produtos farmacêuticos mais vendidos em todo o mundo, o que justifica a sua forte presença no meio ambiente. Por isso, e dada a ausência de trabalhos ecotoxicológicos de solos contaminados por fármacos, o IB foi o produto farmacêutico selecionado para a realização deste trabalho. A ecotoxicidade pode ser avaliada através de bioensaios. Estes têm a capacidade de avaliar a toxicidade de uma determinada substância de forma global, usando organismos vivos que funcionam como bio-indicadores. O presente trabalho tem como objectivos avaliar o impacte causado nos solos pelo IB, testar a toxicidade de dois processos de descontaminação para remover o referido fármaco dos solos assim como avaliar a toxicidade provocada por águas residuais, de três unidades hospitalares e de uma indústria farmacêutica. Esta avaliação foi efectuada através de ensaios de toxicidade aguda de germinação e de alongamento de raiz de sementes de alface, variedade bola de manteiga (Lactuca sativa), em solo arenoso. Os ensaios de ecotoxicidade aguda em solos contaminados por IB foram realizados para uma gama de concentrações entre 0,1 e 1000 μg/L. Verificou-se uma redução do número de sementes germinadas e do comprimento médio da planta no solo contaminado com 0,5 e 20 μg/L de IB. No solo contaminado com 1000 μg/L de IB observou-se uma redução da germinação, acompanhada por uma indução de crescimento da raiz da espécie Lactuca sativa. Os dois tratamentos de descontaminação de solos, reagente de Fenton e Nanopartículas de ferro zero valente, revelaram toxicidade, tendo-se obtido uma percentagem de germinação entre 32,2 ± 3,5 e 48,5 ± 6,2 e inibição do crescimento da raiz do organismo teste em cerca de 85,0 %. Em relação às águas residuais hospitalares verificou-se uma redução da percentagem de germinação entre 31,1 ± 5,0 e 72,3 ± 12,4 e uma inibição do crescimento da raiz situada entre 13,0 ± 6,4 e 20,2 ± 10,0 %. Para a água residual industrial ocorreu uma inibição da percentagem de germinação de 60,5 ± 13,1, contudo nas plantas germinadas observou-se uma indução do crescimento da raiz de 14,9 ± 7,7 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Tecnologia e Segurança Alimentar, 12 Fevereiro de 2016, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) whose migration from food packaging is recognized worldwide. However, the real overall food contamination and related consequences are yet largely unknown. Among humans, children’s exposure to BPA has been emphasized because of the immaturity of their biological systems. The main aim of this study was to assess the reproductive impact of BPA leached from commercially available plastic containers used or related to child nutrition, performing ecotoxicological tests using the biomonitoring species Daphnia magna. Acute and chronic tests, as well as single and multigenerational tests were done. Migration of BPA from several baby bottles and other plastic containers evaluated by GC-MS indicated that a broader range of foodstuff may be contaminated when packed in plastics. Ecotoxicological test results performed using defined concentrations of BPA were in agreement with literature, although a precocious maturity of daphnids was detected at 3.0 mg/L. Curiously, an increased reproductive output (neonates per female) was observed when daphnids were bred in the polycarbonate (PC) containers (145.1±4.3 % to 264.7±3.8 %), both in single as in multigenerational tests, in comparison with the negative control group (100.3±1.6 %). A strong correlated dose-dependent ecotoxicological effect was observed, providing evidence that BPA leached from plastic food packaging materials act as functional estrogen in vivo at very low concentrations. In contrast, neonate production by daphnids cultured in polypropylene and non-PC bottles was slightly but not significantly enhanced (92.5±2.0 % to 118.8±1.8 %). Multigenerational tests also revealed magnification of the adverse effects, not only on fecundity but also on mortality, which represents a worrying trend for organisms that are chronically exposed to xenoestrogens for many generations. Two plausible explanations for the observed results could be given: a non-monotonic dose–response relationship or a mixture toxicity effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A contaminação constitui uma das principais causas de degradação do solo e encontra-se consagrada na Estratégia Temática de Protecção do Solo da Comissão das Comunidades Europeias. Segundo a Agência Europeia do Ambiente (AEA), actualmente, aproximadamente 250000 locais dos 32 países membros da AEA, encontram-se contaminados. As actividades de produção industrial e de serviços, juntamente com a indústria petrolífera constituem, a nível europeu, as principais fontes de contaminação de solos, atingindo 53% das actividades geradoras de contaminação. Para minimizar os impactes ambientais associados à contaminação de solos, as abordagens de avaliação e remediação têm evoluído no sentido de desenvolver ferramentas para a avaliação do risco de contaminação e técnicas de remediação com maior relação custo-benefício. Procura-se, por um lado, uma abordagem de gestão do risco face ao tipo de ocupação do solo, principalmente e, por outro lado, soluções de remediação com valorização económica do local. Neste trabalho pretende-se analisar a problemática da contaminação de solos por hidrocarbonetos, quer na fase de avaliação, quer na de remediação. Para tal, é apresentado o caso de estudo de uma contaminação do solo numa instalação de armazenagem de lubrificantes da empresa Total Portugal Petróleos SA, onde é analisada a fase de avaliação e remediação adoptada. Neste caso de estudo foi identificada uma contaminação no solo por hidrocarbonetos de cadeias longas (predominantes em lubrificantes), que se propagou para além dos limites da instalação de armazenagem. Foi seguida uma das abordagens do referencial de Ontario “Guideline for Use at Contaminated Sites in Ontario”, a de avaliação de risco específica para o local. De acordo com a aplicação desta abordagem, conclui-se que a zona contaminada, para um uso industrial, não apresenta um risco inaceitável para o solo e águas subterrâneas. Contudo, a zona mais afectada foi removida (96,7 t) e, posteriormente, encaminhada como resíduo para destino adequado, em função da sua tipologia. Foi, ainda, aplicado um oxidante (Reactivo Fenton) nas paredes da zona escavada para favorecer a degradação dos hidrocarbonetos remanescentes no solo. A zona escavada foi preenchida com outro solo, onde foi garantida a isenção de contaminantes, em particular hidrocarbonetos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfamethoxazole (SMX) is among the antibiotics employed in aquaculture for prophylactic and therapeutic reasons. Environmental and food spread may be prevented by controlling its levels in several stages of fish farming. The present work proposes for this purpose new SMX selective electrodes for the potentiometric determination of this sulphonamide in water. The selective membranes were made of polyvinyl chloride (PVC) with tetraphenylporphyrin manganese (III) chloride or cyclodextrin-based acting as ionophores. 2-nitrophenyl octyl ether was employed as plasticizer and tetraoctylammonium, dimethyldioctadecylammonium bromide or potassium tetrakis (4-chlorophenyl) borate was used as anionic or cationic additive. The best analytical performance was reported for ISEs of tetraphenylporphyrin manganese (III) chloride with 50% mol of potassium tetrakis (4-chlorophenyl) borate compared to ionophore. Nersntian behaviour was observed from 4.0 × 10−5 to 1.0 × 10−2 mol/L (10.0 to 2500 µg/mL), and the limit of detection was 1.2 × 10−5 mol/L (3.0 µg/mL). In general, the electrodes displayed steady potentials in the pH range of 6 to 9. Emf equilibrium was reached before 15 s in all concentration levels. The electrodes revealed good discriminating ability in environmental samples. The analytical application to contaminated waters showed recoveries from 96 to 106%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental nanoremediation of various contaminants has been reported in several recent studies. In this paper, the state of the art on the use of nanoparticles in soil and groundwater remediation processes is presented. There is a substantive body of evidence on the growing and successful application of nanoremediation for a diversity of soil and groundwater contamination contexts, particularly, for heavy metals, other inorganic contaminants, organic contaminants and emerging contaminants, as pharmaceutical and personal care products. This review confirms the competence of the use of nanoparticles in the remediation of contaminated media and the prevalent use of iron based nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main results presented in this PhD Dissertation have been published in interna-tional journals included in the Science Citation Index (SCI)