950 resultados para Computational grids (Computer systems)
Resumo:
This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented.
Resumo:
Vaikka liiketoimintatiedon hallintaa sekä johdon päätöksentekoa on tutkittu laajasti, näiden kahden käsitteen yhteisvaikutuksesta on olemassa hyvin rajallinen määrä tutkimustietoa. Tulevaisuudessa aiheen tärkeys korostuu, sillä olemassa olevan datan määrä kasvaa jatkuvasti. Yritykset tarvitsevat jatkossa yhä enemmän kyvykkyyksiä sekä resursseja, jotta sekä strukturoitua että strukturoimatonta tietoa voidaan hyödyntää lähteestä riippumatta. Nykyiset Business Intelligence -ratkaisut mahdollistavat tehokkaan liiketoimintatiedon hallinnan osana johdon päätöksentekoa. Aiemman kirjallisuuden pohjalta, tutkimuksen empiirinen osuus tunnistaa liiketoimintatiedon hyödyntämiseen liittyviä tekijöitä, jotka joko tukevat tai rajoittavat johdon päätöksentekoprosessia. Tutkimuksen teoreettinen osuus johdattaa lukijan tutkimusaiheeseen kirjallisuuskatsauksen avulla. Keskeisimmät tutkimukseen liittyvät käsitteet, kuten Business Intelligence ja johdon päätöksenteko, esitetään relevantin kirjallisuuden avulla – tämän lisäksi myös dataan liittyvät käsitteet analysoidaan tarkasti. Tutkimuksen empiirinen osuus rakentuu tutkimusteorian pohjalta. Tutkimuksen empiirisessä osuudessa paneudutaan tutkimusteemoihin käytännön esimerkein: kolmen tapaustutkimuksen avulla tutkitaan sekä kuvataan toisistaan irrallisia tapauksia. Jokainen tapaus kuvataan sekä analysoidaan teoriaan perustuvien väitteiden avulla – nämä väitteet ovat perusedellytyksiä menestyksekkäälle liiketoimintatiedon hyödyntämiseen perustuvalle päätöksenteolle. Tapaustutkimusten avulla alkuperäistä tutkimusongelmaa voidaan analysoida tarkasti huomioiden jo olemassa oleva tutkimustieto. Analyysin tulosten avulla myös yksittäisiä rajoitteita sekä mahdollistavia tekijöitä voidaan analysoida. Tulokset osoittavat, että rajoitteilla on vahvasti negatiivinen vaikutus päätöksentekoprosessin onnistumiseen. Toisaalta yritysjohto on tietoinen liiketoimintatiedon hallintaan liittyvistä positiivisista seurauksista, vaikka kaikkia mahdollisuuksia ei olisikaan hyödynnetty. Tutkimuksen merkittävin tulos esittelee viitekehyksen, jonka puitteissa johdon päätöksentekoprosesseja voidaan arvioida sekä analysoida. Despite the fact that the literature on Business Intelligence and managerial decision-making is extensive, relatively little effort has been made to research the relationship between them. This particular field of study has become important since the amount of data in the world is growing every second. Companies require capabilities and resources in order to utilize structured data and unstructured data from internal and external data sources. However, the present Business Intelligence technologies enable managers to utilize data effectively in decision-making. Based on the prior literature, the empirical part of the thesis identifies the enablers and constraints in computer-aided managerial decision-making process. In this thesis, the theoretical part provides a preliminary understanding about the research area through a literature review. The key concepts such as Business Intelligence and managerial decision-making are explored by reviewing the relevant literature. Additionally, different data sources as well as data forms are analyzed in further detail. All key concepts are taken into account when the empirical part is carried out. The empirical part obtains an understanding of the real world situation when it comes to the themes that were covered in the theoretical part. Three selected case companies are analyzed through those statements, which are considered as critical prerequisites for successful computer-aided managerial decision-making. The case study analysis, which is a part of the empirical part, enables the researcher to examine the relationship between Business Intelligence and managerial decision-making. Based on the findings of the case study analysis, the researcher identifies the enablers and constraints through the case study interviews. The findings indicate that the constraints have a highly negative influence on the decision-making process. In addition, the managers are aware of the positive implications that Business Intelligence has for decision-making, but all possibilities are not yet utilized. As a main result of this study, a data-driven framework for managerial decision-making is introduced. This framework can be used when the managerial decision-making processes are evaluated and analyzed.
Resumo:
The augmented reality (AR) technology has applications in many fields as diverse as aeronautics, tourism, medicine, and education. In this review are summarized the current status of AR and it is proposed a new application of it in weed science. The basic algorithmic elements for AR implementation are already available to develop applications in the area of weed economic thresholds. These include algorithms for image recognition to identify and quantify weeds by species and software for herbicide selection based on weed density. Likewise, all hardware necessary for AR implementation in weed science are available at an affordable price for the user. Thus, the authors propose weed science can take a leading role integrating AR systems into weed economic thresholds software, thus, providing better opportunities for science and computer-based weed control decisions.
Resumo:
End-user development is a very common but often largely overlooked phenomenon in information systems research and practice. End-user development means that regular people, the end-users of software, and not professional developers are doing software development. A large number of people are directly or indirectly impacted by the results of these non-professional development activities. The numbers of users performing end-user development activities are difficult to ascertain precisely. But it is very large, and still growing. Computer adoption is growing towards 100% and many new types of computational devices are continually introduced. In addition, other devices not previously programmable are becoming so. This means that, at this very moment, hundreds of millions of people are likely struggling with development problems. Furthermore, software itself is continually being adapted for more flexibility, enabling users to change the behaviour of their software themselves. New software and services are helping to transform users from consumers to producers. Much of this is now found on-line. The problem for the end-user developer is that little of this development is supported by anyone. Often organisations do not notice end-user development and consequently neither provide support for it, nor are equipped to be able to do so. Many end-user developers do not belong to any organisation at all. Also, the end-user development process may be aggravating the problem. End-users are usually not really committed to the development process, which tends to be more iterative and ad hoc. This means support becomes a distant third behind getting the job done and figuring out the development issues to get the job done. Sometimes the software itself may exacerbate the issue by simplifying the development process, deemphasising the difficulty of the task being undertaken. On-line support could be the lifeline the end-user developer needs. Going online one can find all the knowledge one could ever need. However, that does still not help the end-user apply this information or knowledge in practice. A virtual community, through its ability to adopt the end-user’s specific context, could surmount this final obstacle. This thesis explores the concept of end-user development and how it could be supported through on-line sources, in particular virtual communities, which it is argued here, seem to fit the end-user developer’s needs very well. The experiences of real end-user developers and prior literature were used in this process. Emphasis has been on those end-user developers, e.g. small business owners, who may have literally nowhere to turn to for support. Adopting the viewpoint of the end-user developer, the thesis examines the question of how an end-user could use a virtual community effectively, improving the results of the support process. Assuming the common situation where the demand for support outstrips the supply.
Resumo:
In recent decades, business intelligence (BI) has gained momentum in real-world practice. At the same time, business intelligence has evolved as an important research subject of Information Systems (IS) within the decision support domain. Today’s growing competitive pressure in business has led to increased needs for real-time analytics, i.e., so called real-time BI or operational BI. This is especially true with respect to the electricity production, transmission, distribution, and retail business since the law of physics determines that electricity as a commodity is nearly impossible to be stored economically, and therefore demand-supply needs to be constantly in balance. The current power sector is subject to complex changes, innovation opportunities, and technical and regulatory constraints. These range from low carbon transition, renewable energy sources (RES) development, market design to new technologies (e.g., smart metering, smart grids, electric vehicles, etc.), and new independent power producers (e.g., commercial buildings or households with rooftop solar panel installments, a.k.a. Distributed Generation). Among them, the ongoing deployment of Advanced Metering Infrastructure (AMI) has profound impacts on the electricity retail market. From the view point of BI research, the AMI is enabling real-time or near real-time analytics in the electricity retail business. Following Design Science Research (DSR) paradigm in the IS field, this research presents four aspects of BI for efficient pricing in a competitive electricity retail market: (i) visual data-mining based descriptive analytics, namely electricity consumption profiling, for pricing decision-making support; (ii) real-time BI enterprise architecture for enhancing management’s capacity on real-time decision-making; (iii) prescriptive analytics through agent-based modeling for price-responsive demand simulation; (iv) visual data-mining application for electricity distribution benchmarking. Even though this study is from the perspective of the European electricity industry, particularly focused on Finland and Estonia, the BI approaches investigated can: (i) provide managerial implications to support the utility’s pricing decision-making; (ii) add empirical knowledge to the landscape of BI research; (iii) be transferred to a wide body of practice in the power sector and BI research community.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Nowadays, computer-based systems tend to become more complex and control increasingly critical functions affecting different areas of human activities. Failures of such systems might result in loss of human lives as well as significant damage to the environment. Therefore, their safety needs to be ensured. However, the development of safety-critical systems is not a trivial exercise. Hence, to preclude design faults and guarantee the desired behaviour, different industrial standards prescribe the use of rigorous techniques for development and verification of such systems. The more critical the system is, the more rigorous approach should be undertaken. To ensure safety of a critical computer-based system, satisfaction of the safety requirements imposed on this system should be demonstrated. This task involves a number of activities. In particular, a set of the safety requirements is usually derived by conducting various safety analysis techniques. Strong assurance that the system satisfies the safety requirements can be provided by formal methods, i.e., mathematically-based techniques. At the same time, the evidence that the system under consideration meets the imposed safety requirements might be demonstrated by constructing safety cases. However, the overall safety assurance process of critical computerbased systems remains insufficiently defined due to the following reasons. Firstly, there are semantic differences between safety requirements and formal models. Informally represented safety requirements should be translated into the underlying formal language to enable further veri cation. Secondly, the development of formal models of complex systems can be labour-intensive and time consuming. Thirdly, there are only a few well-defined methods for integration of formal verification results into safety cases. This thesis proposes an integrated approach to the rigorous development and verification of safety-critical systems that (1) facilitates elicitation of safety requirements and their incorporation into formal models, (2) simplifies formal modelling and verification by proposing specification and refinement patterns, and (3) assists in the construction of safety cases from the artefacts generated by formal reasoning. Our chosen formal framework is Event-B. It allows us to tackle the complexity of safety-critical systems as well as to structure safety requirements by applying abstraction and stepwise refinement. The Rodin platform, a tool supporting Event-B, assists in automatic model transformations and proof-based verification of the desired system properties. The proposed approach has been validated by several case studies from different application domains.
Resumo:
Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO) is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.
Resumo:
Clinical decision support systems are useful tools for assisting physicians to diagnose complex illnesses. Schizophrenia is a complex, heterogeneous and incapacitating mental disorder that should be detected as early as possible to avoid a most serious outcome. These artificial intelligence systems might be useful in the early detection of schizophrenia disorder. The objective of the present study was to describe the development of such a clinical decision support system for the diagnosis of schizophrenia spectrum disorders (SADDESQ). The development of this system is described in four stages: knowledge acquisition, knowledge organization, the development of a computer-assisted model, and the evaluation of the system's performance. The knowledge was extracted from an expert through open interviews. These interviews aimed to explore the expert's diagnostic decision-making process for the diagnosis of schizophrenia. A graph methodology was employed to identify the elements involved in the reasoning process. Knowledge was first organized and modeled by means of algorithms and then transferred to a computational model created by the covering approach. The performance assessment involved the comparison of the diagnoses of 38 clinical vignettes between an expert and the SADDESQ. The results showed a relatively low rate of misclassification (18-34%) and a good performance by SADDESQ in the diagnosis of schizophrenia, with an accuracy of 66-82%. The accuracy was higher when schizophreniform disorder was considered as the presence of schizophrenia disorder. Although these results are preliminary, the SADDESQ has exhibited a satisfactory performance, which needs to be further evaluated within a clinical setting.
Resumo:
The main objective of the study was to define the methodology for assessing the limits for application island grids instead of interconnecting with existing grid infrastructure. The model for simulation of grid extension distance and levelised cost of electricity has been developed and validated by the case study in Finland. Thereafter, sensitivities of the application limits were examined with the respect to operational environment, load conditions, supply security and geographical location. Finally, recommendations for the small-scale rural electrification projects in the market economy environment have been proposed.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.
Resumo:
Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.
Resumo:
Many-core systems provide a great potential in application performance with the massively parallel structure. Such systems are currently being integrated into most parts of daily life from high-end server farms to desktop systems, laptops and mobile devices. Yet, these systems are facing increasing challenges such as high temperature causing physical damage, high electrical bills both for servers and individual users, unpleasant noise levels due to active cooling and unrealistic battery drainage in mobile devices; factors caused directly by poor energy efficiency. Power management has traditionally been an area of research providing hardware solutions or runtime power management in the operating system in form of frequency governors. Energy awareness in application software is currently non-existent. This means that applications are not involved in the power management decisions, nor does any interface between the applications and the runtime system to provide such facilities exist. Power management in the operating system is therefore performed purely based on indirect implications of software execution, usually referred to as the workload. It often results in over-allocation of resources, hence power waste. This thesis discusses power management strategies in many-core systems in the form of increasing application software awareness of energy efficiency. The presented approach allows meta-data descriptions in the applications and is manifested in two design recommendations: 1) Energy-aware mapping 2) Energy-aware execution which allow the applications to directly influence the power management decisions. The recommendations eliminate over-allocation of resources and increase the energy efficiency of the computing system. Both recommendations are fully supported in a provided interface in combination with a novel power management runtime system called Bricktop. The work presented in this thesis allows both new- and legacy software to execute with the most energy efficient mapping on a many-core CPU and with the most energy efficient performance level. A set of case study examples demonstrate realworld energy savings in a wide range of applications without performance degradation.
Resumo:
This project aims to design and manufacture a mobile robot with two Universal Robot UR10 mainly used indoors. In order to obtain omni-directional maneuverability, the mobile robot is constructed with Mecanum wheels. The Mecanum wheel can move in any direction with a series of rollers attached to itself. These rollers are angled at 45º about the hub’s circumference. This type of wheels can be used in both driving and steering with their any-direction property. This paper is focused on the design of traction system and suspension system, and the velocity control of Mecanum wheels in the close-loop control system. The mechanical design includes selection of bearing housing, couplers which are act as connection between shafts, motor parts, and other needed components. The 3D design software SolidWorks is utilized to assemble all the components in order to get correct tolerance. The driving shaft is designed based on assembled structure via the software as well. The design of suspension system is to compensate the assembly error of Mecanum wheels to guarantee the stability of the robot. The control system of motor drivers is realized through the Robot Operating System (ROS) on Ubuntu Linux. The purpose of inverse kinematics is to obtain the relationship among the movements of all Mecanum wheels. Via programming and interacting with the computer, the robot could move with required speed and direction.