928 resultados para Complexity.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory building is one of the most crucial challenges faced by basic, clinical and population research, which form the scientific foundations of health practices in contemporary societies. The objective of the study is to propose a Unified Theory of Health-Disease as a conceptual tool for modeling health-disease-care in the light of complexity approaches. With this aim, the epistemological basis of theoretical work in the health field and concepts related to complexity theory as concerned to health problems are discussed. Secondly, the concepts of model-object, multi-planes of occurrence, modes of health and disease-illness-sickness complex are introduced and integrated into a unified theoretical framework. Finally, in the light of recent epistemological developments, the concept of Health-Disease-Care Integrals is updated as a complex reference object fit for modeling health-related processes and phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past few years Tabling has emerged as a powerful logic programming model. The integration of concurrent features into the implementation of Tabling systems is demanded by need to use recently developed tabling applications within distributed systems, where a process has to respond concurrently to several requests. The support for sharing of tables among the concurrent threads of a Tabling process is a desirable feature, to allow one of Tabling’s virtues, the re-use of computations by other threads and to allow efficient usage of available memory. However, the incremental completion of tables which are evaluated concurrently is not a trivial problem. In this dissertation we describe the integration of concurrency mechanisms, by the way of multi-threading, in a state of the art Tabling and Prolog system, XSB. We begin by reviewing the main concepts for a formal description of tabled computations, called SLG resolution and for the implementation of Tabling under the SLG-WAM, the abstract machine supported by XSB. We describe the different scheduling strategies provided by XSB and introduce some new properties of local scheduling, a scheduling strategy for SLG resolution. We proceed to describe our implementation work by describing the process of integrating multi-threading in a Prolog system supporting Tabling, without addressing the problem of shared tables. We describe the trade-offs and implementation decisions involved. We then describe an optimistic algorithm for the concurrent sharing of completed tables, Shared Completed Tables, which allows the sharing of tables without incurring in deadlocks, under local scheduling. This method relies on the execution properties of local scheduling and includes full support for negation. We provide a theoretical framework and discuss the implementation’s correctness and complexity. After that, we describe amethod for the sharing of tables among threads that allows parallelism in the computation of inter-dependent subgoals, which we name Concurrent Completion. We informally argue for the correctness of Concurrent Completion. We give detailed performance measurements of the multi-threaded XSB systems over a variety of machines and operating systems, for both the Shared Completed Tables and the Concurrent Completion implementations. We focus our measurements inthe overhead over the sequential engine and the scalability of the system. We finish with a comparison of XSB with other multi-threaded Prolog systems and we compare our approach to concurrent tabling with parallel and distributed methods for the evaluation of tabling. Finally, we identify future research directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the earliest deadline first algorithm is known to be optimal as a uniprocessor scheduling policy, the implementation comes at a cost in terms of complexity. Fixed taskpriority algorithms on the other hand have lower complexity but higher likelihood of task sets being declared unschedulable, when compared to earliest deadline first (EDF). Various attempts have been undertaken to increase the chances of proving a task set schedulable with similar low complexity. In some cases, this was achieved by modifying applications to limit preemptions, at the cost of flexibility. In this work, we explore several variants of a concept to limit interference by locking down the ready queue at certain instances. The aim is to increase the prospects of schedulability of a given task system, without compromising on complexity or flexibility, when compared to the regular fixed task-priority algorithm. As a final contribution, a new preemption threshold assignment algorithm is provided which is less complex and more straightforward than the previous method available in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Civil - Ramo de Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definition and programming of distributed applications has become a major research issue due to the increasing availability of (large scale) distributed platforms and the requirements posed by the economical globalization. However, such a task requires a huge effort due to the complexity of the distributed environments: large amount of users may communicate and share information across different authority domains; moreover, the “execution environment” or “computations” are dynamic since the number of users and the computational infrastructure change in time. Grid environments, in particular, promise to be an answer to deal with such complexity, by providing high performance execution support to large amount of users, and resource sharing across different organizations. Nevertheless, programming in Grid environments is still a difficult task. There is a lack of high level programming paradigms and support tools that may guide the application developer and allow reusability of state-of-the-art solutions. Specifically, the main goal of the work presented in this thesis is to contribute to the simplification of the development cycle of applications for Grid environments by bringing structure and flexibility to three stages of that cycle through a commonmodel. The stages are: the design phase, the execution phase, and the reconfiguration phase. The common model is based on the manipulation of patterns through pattern operators, and the division of both patterns and operators into two categories, namely structural and behavioural. Moreover, both structural and behavioural patterns are first class entities at each of the aforesaid stages. At the design phase, patterns can be manipulated like other first class entities such as components. This allows a more structured way to build applications by reusing and composing state-of-the-art patterns. At the execution phase, patterns are units of execution control: it is possible, for example, to start or stop and to resume the execution of a pattern as a single entity. At the reconfiguration phase, patterns can also be manipulated as single entities with the additional advantage that it is possible to perform a structural reconfiguration while keeping some of the behavioural constraints, and vice-versa. For example, it is possible to replace a behavioural pattern, which was applied to some structural pattern, with another behavioural pattern. In this thesis, besides the proposal of the methodology for distributed application development, as sketched above, a definition of a relevant set of pattern operators was made. The methodology and the expressivity of the pattern operators were assessed through the development of several representative distributed applications. To support this validation, a prototype was designed and implemented, encompassing some relevant patterns and a significant part of the patterns operators defined. This prototype was based in the Triana environment; Triana supports the development and deployment of distributed applications in the Grid through a dataflow-based programming model. Additionally, this thesis also presents the analysis of a mapping of some operators for execution control onto the Distributed Resource Management Application API (DRMAA). This assessment confirmed the suitability of the proposed model, as well as the generality and flexibility of the defined pattern operators

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preemptions account for a non-negligible overhead during system execution. There has been substantial amount of research on estimating the delay incurred due to the loss of working sets in the processor state (caches, registers, TLBs) and some on avoiding preemptions, or limiting the preemption cost. We present an algorithm to reduce preemptions by further delaying the start of execution of high priority tasks in fixed priority scheduling. Our approaches take advantage of the floating non-preemptive regions model and exploit the fact that, during the schedule, the relative task phasing will differ from the worst-case scenario in terms of admissible preemption deferral. Furthermore, approximations to reduce the complexity of the proposed approach are presented. Substantial set of experiments demonstrate that the approach and approximations improve over existing work, in particular for the case of high utilisation systems, where savings of up to 22% on the number of preemption are attained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a single device. This situation is particularly critical for small embedded devices used in consumer electronics, telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related to weight, space, and energy consumption, these systems are typically built using microprocessors with lower processing power and limited resources. The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS) constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being implemented in the Android platform. This paper discusses key challenges that must be addressed and possible directions to incorporate the desired real-time behaviour in Android.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take individual sensor readings, however, in many cases, it is relevant to compute aggregated quantities of these readings. In fact, the minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. In this context, we propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.