935 resultados para Climatic changes -- Economic aspects -- Canada
Resumo:
Understanding how climate change will affect the distribution and the phenology of plants is becoming an increasingly important topic in ecological studies. In response to climate warming, there are documented upward shift and alterations of phenology and physiology of several plant species. Despite this, the effects of climate change on plant regeneration from seeds have largely been neglected. However, regeneration from seeds, a key event in the plant life cycle, could be significantly affected by climate warming. In this regard, we investigated how climatic changes will affect the seasonal dynamics of seed germination and seedling survival in two different alpine context. The first part refers to five species inhabiting a snowbed located at the Gavia pass (Parco Naturale dello Stelvio). Here, plants were exposed, in the field, to natural conditions and to artificial warming using Open Top Chambers proposed by the ITEX (International Tundra Experiment). The germination curves of seeds produced were compared in order to highlight differences in seed germination ecology and in seed physiology induced by the climate warming. In the second part, we considered two tree species that form the treeline in Davos (Switzerland). As a surrogate of climate warming we used the natural thermal gradient driven by the altitude and we compared the germination behavior of the species studied in three sites at three different elevations in order to evaluate the likelihood of treeline shift under the predicted climate warming.
Resumo:
Knowledge on the expected effects of climate change on aquatic ecosystems is defined by three ways. On the one hand, long-term observation in the field serves as a basis for the possible changes; on the other hand, the experimental approach may bring valuable pieces of information to the research field. The expected effects of climate change cannot be studied by empirical approach; rather mathematical models are useful tools for this purpose. Within this study, the main findings of field observations and their implications for future were summarized; moreover, the modelling approaches were discussed in a more detailed way. Some models try to describe the variation of physical parameters in a given aquatic habitat, thus our knowledge on their biota is confined to the findings based on our present observations. Others are destined for answering special issues related to the given water body. Complex ecosystem models are the keys of our better understanding of the possible effects of climate change. Basically, these models were not created for testing the influence of global warming, rather focused on the description of a complex system (e. g. a lake) involving environmental variables, nutrients. However, such models are capable of studying climatic changes as well by taking into consideration a large set of environmental variables. Mostly, the outputs are consistent with the assumptions based on the findings in the field. Since synthetized models are rather difficult to handle and require quite large series of data, the authors proposed a more simple modelling approach, which is capable of examining the effects of global warming. This approach includes weather dependent simulation modelling of the seasonal dynamics of aquatic organisms within a simplified framework.
Resumo:
Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past ~5 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.