998 resultados para Chemistry, Physical and theoretical.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Argilas de interesse da indústria de cerâmica estrutural foram caracterizadas. Algumas propriedades físicas de diversas massas cerâmicas, preparadas a partir de material coletado em depósitos artificiais, também foram analisadas. Todas as massas investigadas exibem alta concentração de componentes finos (< 2 mim) e considerável grau de plasticidade, o que é compatível com a presença de elevado teor de argilominerais. Corpos de prova cerâmicos foram preparados por prensagem a seco e queimados em temperaturas ao redor de 855 °C. Os parâmetros resistência mecânica à flexão, retração linear, absorção de água, cor aparente e perda de peso foram medidos. Como resultado, as aplicações industriais destas matérias primas foram analisadas e revistas, bem como novas aplicações foram propostas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and theoretical study on the piezoelectric behaviour of PZT doped with a range of calcium ion concentrations is presented. A systematic study of the effect on the piezoelectric properties of PZT doped with various concentrations of CaO at constant sintering temperature and sintering time was carried out. The remanent polarization, planar coupling factor and frequency-thickness constant increase with calcium concentration. Ab initio perturbed ion calculations show that the lattice energy decreases with calcium addition for both tetragonal and rhombohedral phases of PZT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and theoretical study of the ferroelectric and piezoelectric behavior of PZT doped with barium is presented. Ab initio perturbed ion calculations was carried out. The properties, such as remnant polarization, coercive field and the coupling factor of the PZT at constant sintering temperature was compared with the Zr4+/Ti4+ ions dislocation energy and the lattice interaction energy. An agreement between the experimental and theoretical results, with a decrease of the interaction energy and an inversion of the energy stability from tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(1) C11H17IN2STe, Mr = 463.83, P2(1)/n, a 7.6582(8), b = 13.8008(9), c = 15.026(3) angstrom, beta = 96.233(12)degrees, Z = 4, R-1 = 0.0318. (2) C15H19IN2STe, Mr = 513.88, P2(1)/n, a = 8.434(5), b = 11.697(5), c = 18.472(5) angstrom, beta = 98.556(5)degrees, Z = 4, R-1 = 0.0236. The synthesis of the aryltellurenyl N,N',-tetramethylthiourea (tmtu) iodide has been performed by ligand exchange with potassium iodide and the corresponding aryltellurenyl(tmtu) bromide. In both structures the tellurium atom is primarily three-coordinated, being bonded to a carbon atom of the organic ring and, in directions nearly perpendicular to the Te-C bond, to one tmtu sulfur atom and one iodine. In addition there are Te...secondary bonds, joining the molecules in centrosymmetric dimers, which in turn are joined through C-H...1 and C-H... S interactions, in (1) and (2), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine PbZr0.20Ti0.80O3 was omorphized through high-energy mechanical milling. The structural evolution through the omorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory frame-work. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence.