971 resultados para Cellular activation
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
Photoluminescence (PL) and electrical characteristics of SI-GaAs, Si+-implanted and following rapid thermal annealing (RTA), were investigated, The PL spectra of Si-GA-C-As, Ga-i-Si-As, and V-As-Si-As were obtained. This paper concentrates on the PL peak at 1.36 eV which was proven as an emission of the Si-Ga-V-Ga combination by Si+ + P+ dual implantation. The results indicate that the peak at 1.36 eV appears when the ratio of As:Ga increased during the processing. Also high activation was obtained for the sample under the same conditions. More discussion on the mechanism of Si+ implanted SI-GaAs has been made based on the Morrow model [J. Appl. Phys, 64 (1988) 1889].
Resumo:
The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaNepilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.
Resumo:
Survivin is a member of the inhibitors of apoptosis (IAP) protein family that interferes with post-mitochondrial events including activation of caspases. To examine the regulation of survivin expression in response to irradiation with different linear energy transfer (LET), human hepatoma HepG2 cells were irradiated in vitro with X-rays and carbon ions. Cellular sensitivities to low- and high-LET radiation were determined by colony formation. Survivin expression at mRNA and protein level were measured with RT-PCR and Western blot analyses, respectively. Radiation-induced cell cycle arrest and apoptosis were investigated with flow cytometry. We found that low-LET X-rays induced dose-dependent increases in survivin expression. After exposure to high-LET carbon ions, survivin expression gradually increased from 0 to 4 Gy, and then declined at 6 Gy. More pronounced survivin expression, stronger G(2)/M phase arrest was observed after exposure to carbon ions in comparison with X-rays at doses from 0 to 4 Gy. These observations indicate that there is a differential survivin expression in response to different LET radiations and the cycle arrest mechanism may be associated with it. In addition, our data on induction of apoptosis are compatible with the assumption that survivin expression induced by low-LET X-rays radiation may play a critical role in inhibiting apoptosis. However, after irradiation with ions, an anti-apoptotic function of survivin is not evident, possibly because of the serious damage produced by densely ionizing radiation.
Resumo:
In this paper, we study the ability of DNA-PK-deficient (M059J) and -proficient (M059K) cells to undergo the rate of cellular proliferation, cell cycle distribution and apoptosis after 10 Gy X-ray irradiation, and the role of DNA-PK in radiosensitivity. The results showed that M059J cells exhibited hyper-radiosensitivity compared with M059K cells. A strong G2 phase arrest was observed in M059J cells post irradiation. Significant accumulation in the G2 phase in M059J cells was accompanied by apoptosis at 12 h. Altogether, the data suggested that DNA-PK may have two roles in mammalian cells after DNA damage, a role in DNA DSB repair and a second role in DNA-damaged cells to traverse a G2 checkpoint, by which DNA-PK may affect cellular sensitivity to ionizing radiation. 地址: [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China; [Li Ning; Zhang Hong; Wang Yanling; Hao Jifang] Key Lab Heavy Ion Radiat Med Gansu Prov, Lanzhou 730000, Peoples R China; [Li Ning; Wang Yanling] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China; [Wang Xiaohu] Gansu Tumor Hosp, Dept Radiotherapy, Lanzhou 730050, Peoples R China