953 resultados para Cell-growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae is an important model organism for the study of cell biology. The similarity between yeast and human genes and the conservation of fundamental pathways means it can be used to investigate characteristics of healthy and diseased cells throughout the lifespan. Yeast is an equally important biotechnological tool that has long been the organism of choice for the production of alcoholic beverages, bread and a large variety of industrial products. For example, yeast is used to manufacture biofuels, lubricants, detergents, industrial enzymes, food additives and pharmaceuticals such as anti-parasitics, anti-cancer compounds, hormones (including insulin), vaccines and nutraceuticals. Its function as a cell factory is possible because of the speed with which it can be grown to high cell yields, the knowledge that it is generally recognized as safe (GRAS) and the ease with which metabolism and cellular pathways, such as translation can be manipulated. In this thesis, these two pathways are explored in the context of their biotechnological application to ageing research: (i) understanding translational processes during the high-yielding production of membrane protein drug targets and (ii) the manipulation of yeast metabolism to study the molecule, L-carnosine, which has been proposed to have anti-ageing properties. In the first of these themes, the yeast strains, spt3?, srb5?, gcn5? and yTHCBMS1, were examined since they have been previously demonstrated to dramatically increase the yields of a target membrane protein (the aquaporin, Fps1) compared to wild-type cells. The mechanisms underlying this discovery were therefore investigated. All high yielding strains were shown to have an altered translational state (mostly characterised by an initiation block) and constitutive phosphorylation of the translational initiation factor, eIF2a. The relevance of the initiation block was further supported by the finding that other strains, with known initiation blocks, are also high yielding for Fps1. A correlation in all strains between increased Fps1 yields and increased production of the transcriptional activator protein, Gcn4, suggested that yields are subject to translational control. Analysis of the 5´ untranslated region (UTR) of FPS1 revealed two upstream open reading frames (uORFs). Mutagenesis data suggest that high yielding strains may circumvent these control elements through either a leaky scanning or a re-initiation mechanism. In the second theme, the dipeptide L-carnosine (ß-alanyl-L-histidine) was investigated: it has previously been shown to inhibit the growth of cancer cells but delay senescence in cultured human fibroblasts and extend the lifespan of male fruit flies. To understand these apparently contradictory properties, the effects of L-carnosine on yeast were studied. S. cerevisiae can respire aerobically when grown on a non-fermentable carbon source as a substrate but has a respiro-fermentative metabolism when grown on a fermentable carbon source; these metabolisms mimic normal cell and cancerous cell metabolisms, respectively. When yeast were grown on fermentable carbon sources, in the presence of L-carnosine, a reduction in cell growth and viability was observed, which was not apparent for cells grown on a non-fermentable carbon source. The metabolism-dependent mechanism was confirmed in the respiratory yeast species Pichia pastoris. Further analysis of S. cerevisiae yeast strains with deletions in their nutrient-sensing pathway, which result in an increase in respiratory metabolism, confirmed the metabolism-dependent effects of L-carnosine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The NADPH oxidase family of enzymes has emerged as a major source of reactive oxygen species (ROS) that is important in diverse cellular functions including anti-microbial defence, inflammation and redox signaling. Of the five known NADPH oxidase isoforms, several are expressed in cardiovascular cells where they are involved in physiological and pathological processes such as the regulation of vascular tone, cell growth, migration, proliferation, hypertrophy, apoptosis and matrix deposition. This article reviews current knowledge regarding the role of NADPH oxidases in cardiomyocyte function in health and disease. © 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of cholecystokinin (CCK) on cultured human meningioma derived cells was investigated. Exposure of meningioma cells for 6-12 days to CCK-8s (2-200 nM) resulted in a dose dependent stimulation of cell growth to a maximum of 1.1-fold over basal controls. A time course study showed stimulation of cell growth at day 3 followed by increase throughout day 6. The stimulatory effect of CCK on meningioma cell growth was completely abolished by a CCK-B specific receptor antagonist, L-365,260. Reverse-transcription of meningioma-derived RNA into cDNA followed by amplification by the polymerase chain reaction using specific primers for CCK peptide and its CCK-A and/B receptor revealed 100% presence of CCK peptide and CCK-B receptors mRNA whereas CCK-A receptor was expressed in 66% of the meningiomas. These results provide evidence that human meningioma cells possess CCK peptide and its receptors the activation of which leads to increase of cell growth possibly via an autocrine/paracrine mechanism. © Springer 2005.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E-Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ras is a proto-oncogene that codes for a small GTPase and is responsible for linking several extracellular signals to intracellular mechanisms that involve cell growth, differentiation and cell-programmed death in normal and diseased cells. In all these processes, Ras has been extensively investigated. However, the role of Ras GTPases is still poorly understood during the differentiation of 3T3-L1 preadipocytes. In this study I investigated the role of the H-Ras defective mutant, Ras:G12V on the differentiation of 3T3-L1 preadipocytes. Preadipocytes were differentiated in vitro to adipocytes (fat cells) by adding an induction medium containing several factors including glucose and insulin. The formation of fat cells evidenced by the visualization of lipid drops as well as by quantifying the accumulation of Oil red O into lipid drops. To examine the role of Ras:G12V mutant, several selective mutations were introduced in order to determine the signaling transduction pathways (i.e., PI3(K)kinase and MAP(K)Kinase) responsible for the Ras-dependent adipogenesis. Cells expressing Ras:G12V mutant stimulated 3T3-L1 preadipocyte differentiation without he need for induction media, suggesting that Ras activation is an essential factor required for 3T3-L1 preadipocyte differentiation. Introduction of a second mutation on Ras:G12V (i.e., Ras:G12V;E37G), which blocks the activation of the MAPKinase pathway, strongly inhibited the 3T3-L1 preadipocyte differentiation. It is also important to note Ras:G12V:E37G double mutant does not inhibit the activation of the PI3kinase pathway. Other Ras double mutants (Ras:G12V;S35T, and V12G;C40Y) showed a modest inhibition of the 3T3-L1 preadipocyte differentiation. Taken together, these observations indicate that Ras plays a selective role in 3T3-L1 preadipocyte differentiation. Thus, understanding which specific pathway Ras employs during preadipocyte differentiation could clarify some of the uncertainties surrounding fat production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBP&agr;. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. ^ In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. ^ MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological performance of two coccolithophore species,Emiliania huxleyi and Coccolithus braarudii, was investigated during long-term exposure to elevated pCO2 levels. Mono-specific cultures were grown over 152 (E. huxleyi) and 65 (C. braarudii) generations while pCO2 was gradually increased to maximum levels of 1150 ?atm (E. huxleyi) and 930 ?atm (C. braarudii) and kept constant thereafter. Rates of cell growth and cell quotas of particulate organic carbon (POC), particulate inorganic carbon (PIC) and total particulate nitrogen (TPN) were determined repeatedly throughout the incubation period. Increasing pCO2 caused a decrease in cell growth rate of 9% and 29% in E. huxleyi and C. braarudii, respectively. In both species cellular PIC:TPN and PIC:POC ratios decreased in response to rising pCO2, whereas no change was observed in the POC:TPN ratios of E. huxleyi and C. braarudii. These results are consistent with those obtained in shorter-term high CO2exposure experiments following abrupt pertubations of the seawater carbonate system and indicate that for the strains tested here a gradual CO2 increase does not alleviate CO2/pH sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ABL family of non-receptor tyrosine kinases, ABL1 (also known as c-ABL) and ABL2 (also known as Arg), links diverse extracellular stimuli to signaling pathways that control cell growth, survival, adhesion, migration and invasion. ABL tyrosine kinases play an oncogenic role in human leukemias. However, the role of ABL kinases in solid tumors including breast cancer progression and metastasis is just emerging.

To evaluate whether ABL family kinases are involved in breast cancer development and metastasis, we first analyzed genomic data from large-scale screen of breast cancer patients. We found that ABL kinases are up-regulated in invasive breast cancer patients and high expression of ABL kinases correlates with poor prognosis and early metastasis. Using xenograft mouse models combined with genetic and pharmacological approaches, we demonstrated that ABL kinases are required for regulating breast cancer progression and metastasis to the bone. Using next generation sequencing and bioinformatics analysis, we uncovered a critical role for ABL kinases in promoting multiple oncogenic pathways including TAZ and STAT5 signaling networks and the epithelial to mesenchymal transition (EMT). These findings revealed a role for ABL kinases in regulating breast cancer tumorigenesis and bone metastasis and provide a rationale for targeting breast tumors with ABL-specific inhibitors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA sequences that are rich in the guanine nucleic base possess the ability to fold into higher order structures called G-quadruplexes. These higher level structures are formed as a result of two sets of four guanine bases hydrogen-bonding together in a planar arrangement called a guanine quartet. Guanine quartets subsequently stack upon each other to form quadruplexes. G-quadruplexes are mainly localized in telomeres as well as in oncogene promoters. One unique and promising therapeutic approach against cancer involves targeting and stabilizing G-quadruplexes with small molecules, generally in order to suppress oncogene expression and telomerase enzyme activity; the latter has been found to contribute to “out-of control” cell growth in ca. 80-85% of all cancer cells and primary tumours while being absent in normal somatic cells. In this work, we present efforts towards designing and synthesizing acridine-based macrocycles (Mh) and (Mb) with the purpose of providing potential G4 ligands that are suited for selective binding to G4 vs. duplex DNA, and stabilize G-quadruplex structures. Two ligands described in this study include an acridine core which provides an aromatic surface capable of π-π interactions with the surface of G-quadruplexes. The successful synthesis of 4,5-diaminoacridine is described in chapter 2, as an essential fragment of the macrocycles (Mh) and (Mb). In order to investigate the synthetic method for macrocyclization, model compounds composing almost half of the designed macrocycles were explored. As discussed in chapter 3, the synthesis of the model compound for (Mb) turned out to be challenging. However, as a step towards the synthesis of (Mh), the synthesis of the hydrogen-containing model compound, which is almost half of the desired macrocycle (Mh) was achieved in our group and proved to be promising.