976 resultados para Buffer
Resumo:
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.
Resumo:
Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C+ ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC]+ and [BeC]+ to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.
Resumo:
Background: The use affixed-term employment has increased lately, particularly in Europe and in the health care sector. Previous studies have shown that especially among the health care sector employee's organizational justice perceptions and job control are important factors that are directly related to the welfare and attitudes of employees and may also help to buffer the negative impacts of many detrimental factors.
Resumo:
In the present study the extraction of paralytic shellfish poisoning (PSP) toxins from a toxic strain of the marine dinoflagellate Alexandrium tamarense CCMP-1493 using various mechanical and/or physical procedures was investigated. PBS buffer was investigated as the extraction solvent in order for these procedures to be used directly with immuno-magnetic Ferrospheres-N. The extraction was performed following the determination of when toxin content by the algae was at its highest during batch culture. The methods used for cell lysis and toxin extraction included freeze-thawing, freeze-boiling, steel ball bearing beating, glass bead beating, and sonication. The steel ball bearing beating was determined to release a similar amount of toxin when compared to a modified standard extraction method which was reported to release 100% of toxins from the algal cells and was therefore used in the next phase of the study. This next phase was to determine the feasibility of utilising an antibody coupled to novel magnetic microspheres (Ferrospheres-N) as a simple, rapid immune-capture procedure for PSP toxins extracted from the algae. The effects of increasing mass of Ferrospheres-N on the immuno-capture of the PSP toxins from the toxic algal strain extracts were investigated. Toxin recovery was found to increase when an increasing mass of Ferrospheres-N was used until 96.2% (+/- 1.3 SD) of the toxin extracted from the cells was captured and eluted. Toxin recovery was determined by comparison to an appropriate PSP toxin standard curve following analysis by the AOAC HPLC method. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The evolution of the optical sensor for CO2 over the past two decades is outlined and illustrated through examples of luminescent-based sensors. The basic principles and design of the early 'wet covered' type sensor, in which a pH sensitive dye in an aqueous buffer is covered by a gas permeable, ion impermeable, membrane, are outlined. The gradual move from the 'wet covered' types of CO2 optical sensor to 'solid-water droplet' type sensors and then onto 'solid' sensors is charted. The basic design and principles of operation of the modern 'solid' optical sensor for P-CO2 is covered in some detail. Other sensing strategies outside the simple use of pH-sensitive dyes are also considered, most notably those based on luminescence lifetime measurements.
Resumo:
The rate of oxidation of reduced methyl viologen (MV+4) by water, catalyzed by colloidal Pt/Al2O3, is reduced by a factor of congruent-to 5 when D2O is used as a solvent rather than H2O in the presence of a pH 4.40 acetate buffer. In contrast, the rate measured in the presence of a pH 3.05 buffer is reduced only slightly when D2O replaces H2O. H/D isotope separation factors for the methyl viologen mediated reduction of water to hydrogen catalyzed by Pt/Al2O3 are 4.22 (+/- 0.15) at pH 4.40 and 5.99 (+/- 0.11) at pH 3.05, at 25-degrees-C. These data are interpreted in terms of the electrochemical model for metal-catalyzed redox reactions with a pH-dependent mechanism for the hydrogen-evolving reaction. It is proposed that hydrogen atom combination on the catalyst surface is the rate-limiting step at pH 4.40, whereas at pH 3.05 diffusion of MV2+4 is rate limiting and hydrogen evolution proceeds via the electrochemical reaction between a surface-adsorbed hydrogen atom and a solution-phase proton.
Resumo:
Biosensor-based immunochemical screening assays for the detection of sulfadiazine (SDZ) and sulfamethazine (SMT) in muscle extract from pigs were developed. Samples were extracted with aqueous buffer and then centrifuged. This simple and straightforward preparation allowed up to 40 samples to be processed and analysed in 1 d. The limits of detection for the assays were found to be 5.6 ng g(-1) for SDZ and 7.4 ng g(-1) for SMT. These figures were well below the European and US legal limits for sulfonamides (100 ng g(-1)). The precision (RSD) between runs was
Resumo:
A rapid imununoassay using an optical biosensor (BIAcore(TM)) for determining the presence of sulphadiazine (SDZ) residues in pig bile was developed. SDZ,cas immobilised onto the surface of a dextran-coated silicon chip and a solution containing SDZ antibody, sample and buffer was injected over the chip surface. The level of antibody binding to the chip was determined after 20 s and the surface of the chip was then regenerated over a 1-min period prior to another sample injection taking place. Standard curves were constructed to allow quantification of SDZ presence in sample. Concentrations ranging from 0 to 10.64 mu g ml(-1) SDZ were detected in bile samples taken from experimentally fed pigs and randomly selected pigs taken from a local slaughterhouse. These results were compared to the concentrations of SDZ detected by high-performance liquid chromatography: in associated tissues. When concentrations in bile exceeded 0.6 mu g ml(-1) SDZ, the corresponding edible tissue was above the maximum residue level (MRL), i.e. 0.1 mu g g(-1) in 13 out of 14 cases. Wizen the bile concentration was less than 0.6 mu ml(-1) the associated tissue concentrations never exceeded rite MRL. This experiment has indicated that biosensor analysis of bile is a highly effective method for detecting violative SDZ residues in meat.
Resumo:
This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Whilst there are a number of methods available to characterise the cell surface hydrophobicity (CSH) and cell surface charge (CSC) of microorganisms, there is still debate concerning the correlation of results between individual methods. In this study, the techniques of bacterial adherence to hydrocarbons (BATH) and hydrophobic interaction chromatography (HTC) were used to measure CSH. Electrostatic interaction chromatography (ESIC) and zeta potential (ZP) measurements were used to determine CSC. To allow meaningful comparisons between the BATH and HIC tests, between ESIC and ZP and also between CSH and CSC, the buffer systems employed in each test were standardised (phosphate buffered saline, pH 7.3, 0.01 mM). Isolates of Staphylococcus epidermidis derived from microbial biofilm were used as the test organism in this study. The isolates examined exhibited primarily medium to high CSH and a highly negative CSC. Good correlation of CSH measurement was observed between the BATH and HIC tests (r = 0.89). Good correlation was observed between ESIC (anionic exchange column) and ZP measurements. No correlations were observed between isolate CSC and either increased or decreased CSH. It is recommended that whenever comparisons of various methods to determine either CSC or CSH (by partitioning methods), the buffer systems should remain constant throughout to achieve consistency of results.
Resumo:
Conditional branches frequently exhibit similar behavior (bias, time-varying behavior,...), a property that can be used to improve branch prediction accuracy. Branch clustering constructs groups or clusters of branches with similar behavior and applies different branch prediction techniques to each branch cluster. We revisit the topic of branch clustering with the aim of generalizing branch clustering. We investigate several methods to measure cluster information, with the most effective the storage of information in the branch target buffer. Also, we investigate alternative methods of using the branch cluster identification in the branch predictor. By these improvements we arrive at a branch clustering technique that obtains higher accuracy than previous approaches presented in the literature for the gshare predictor. Furthermore, we evaluate our branch clustering technique in a wide range of predictors to show the general applicability of the method. Branch clustering improves the accuracy of the local history (PAg) predictor, the path-based perceptron and the PPM-like predictor, one of the 2004 CBP finalists.
Resumo:
A red-pigmented, radiation-resistant, Gram-negative, rod-shaped bacterium isolated from irradiated pork is described. The D,, values in buffer solution and on pork mince are 3.45 and 5.05 kGy respectively. The strain has been identified as a Deinobacter species
Resumo:
Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: Peptide YY (PYY) is a gastrointestinal hormone with physiological actions regulating appetite and energy homoeostasis. The cellular mechanisms by which nutrients stimulate PYY secretion from intestinal enteroendocrine cells are still being elucidated.
METHODS: This study comprehensively evaluated the suitability of intestinal STC-1 cells as an in vitro model of PYY secretion. PYY concentrations (both intracellular and in culture media) with other intestinal peptides (CCK, GLP-1 and GIP) demonstrated that PYY is a prominent product of STC-1 cells. Furthermore, acute and chronic PYY responses to 15 short (SCFAs)- and long-chain (LCFAs) dietary fatty acids were measured alongside parameters for DNA synthesis, cell viability and cytotoxicity.
RESULTS: We found STC-1 cells to be reliable secretors of PYY constitutively releasing PYY into cell culture media (but not into non-stimulatory buffer). We demonstrate for the first time that STC-1 cells produce PYY mRNA transcripts; that STC-1 cells produce specific time- and concentration-dependent PYY secretory responses to valeric acid; that linoleic acid and conjugated linoleic acid 9,11 (CLA 9,11) are potent PYY secretagogues; and that chronic exposure of SCFAs and LCFAs can be detrimental to STC-1 cells.
CONCLUSIONS: Our studies demonstrate the potential usefulness of STC-1 cells as an in vitro model for investigating nutrient-stimulated PYY secretion in an acute setting. Furthermore, our discovery that CLA directly stimulates L-cells to secrete PYY indicates another possible mechanism contributing to the observed effects of dietary CLA on weight loss.
Resumo:
Paralytic shellfish poisoning is a toxic syndrome described in humans following the ingestion of seafood contaminated with saxitoxin and/or its derivatives. The presence of these toxins in shellfish is considered an important health threat and their levels in seafood destined to human consumption are regulated in many countries, as well as the levels of other chemically unrelated toxins. We studied the feasibility of immunodetection of saxitoxin and its analogs using a solid-phase microsphere assay coupled to flow cytometry detection in a Luminex 200 system. The technique consists of a competition assay where the toxins in solution compete with bead-bound saxitoxin for binding to an antigonyautoxin 2/3 monoclonal antibody (GT-13A). The assay allowed the detection of saxitoxin both in buffer and mussel extracts in the range of 2.2-19.7 ng/mL (IC(20)-IC(80)). Moreover, the assay cross-reactivity with other toxins of the group is similar to previously published immunoassays, with adequate detection of most analogs except N-1 hydroxy analogs. The recovery rate of the assay for saxitoxin was close to 100%. This microsphere-based immunoassay is suitable to be used as a screening method, detecting saxitoxin from 260 to 2360 µg/kg. This microsphere/flow cytometry system provided similar sensitivities to previously published immunoassays and provides a solid background for the development of easy, flexible multiplexing of toxin detection in one sample.