969 resultados para Brain tumor
Resumo:
Background: A growing body of epidemiological research suggests high rates of traumatic brain injury (TBI) in prisoners. The aim of this review is to systematically explore the literature surrounding the rates of TBI and their co-occurrences in a prison population.
Methods: Six electronic databases were systematically searched for articles published between 1980 and 2014. Studies were screened for inclusion based on predetermined criteria by two researchers who independently performed data extraction. Study quality was appraised based on a modified quality assessment tool.
Results: Twenty six studies were included in this review. Quality assessment ranged from 20% (poor) to 80% (good) with an overall average of 60%. Twenty four papers included TBI prevalence rates, which ranged from 5.69%-88%. Seventeen studies explored co-occurring factors including rates of aggression (n=7), substance abuse (n=9), anxiety and depression (n=5), neurocognitive deficits (n=4), and psychiatric conditions (n=3).
Conclusions: The high degree of variation in TBI rates may be attributed to the inconsistent way in which TBI was measured with only seven studies using valid and reliable screening tools. Additionally, gaps in the literature surrounding personality outcomes in prisoners with TBI, female prisoners with TBI, and qualitative outcomes were found.
Resumo:
BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy.
METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras.
CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.
Resumo:
Disturbed lipid metabolism is a well-established feature of human Alzheimer’s disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.
Resumo:
The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology impacts upon the metabolome is still not understood, nor is it known how disturbances change as the disease progresses. For the first time we have profiled longitudinally (6, 8, 10, 12 and 18 months) both the brain and plasma metabolome of APP/PS1 double transgenic and wild type (WT) mice. A total of 187 metabolites were quantified using a targeted metabolomics methodology. Multivariate statistical analysis produced models that distinguished APP/PS1 from WT mice at 8, 10 and 12 months.Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids,branched chain amino acids and also in the neurotransmitter serotonin.Pronounced imbalances in phospholipid and acylcarnitine homeostasis was evident in two age groups. AD-like pathology therefore impacts greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.
Resumo:
Malignant Triton tumor (MTT) is a malignant peripheral nerve sheath tumor showing rhabdomyoblastic differentiation. It is considered a high-grade neoplasm with poor outcome. This report describes an MTT appearing in the oral cavity. On histologic examination the encapsulated lesion was composed of interlacing fascicles of spindle cells and scattered, large, strap-like pleomorphic cells with abundant eosinophilic cytoplasm. No cross striations were seen. Examination of levels through the tissue showed a total of only 4 normal mitoses and no necrosis. Immunohistochemistry demonstrated diffuse S100 positivity in the spindle cells. The large pleomorphic cells were weakly positive for alpha-sarcomeric actin and myoglobin, although variably but strongly positive for desmin. Management involved a small en bloc resection of the maxilla. After 33 months there was no sign of recurrence or distant metastasis. It was concluded that low-grade variants of MTT occur that do not have an aggressive clinical course.
Resumo:
Opioid peptide neurotransmitters stimulate feeding and are involved in mediating the rewarding aspects of feeding, as well as in energy regulation in the brain. The effects of sucrose diets on opioid peptide gene expression were measured in the arcuate nucleus (ARC) and the paraventricular nucleus (PVN) of the rat. Rats were fed a cornstarch-based diet or a low (16.7%), medium (33.4%), or high (50%) sucrose containing diet for 7 days. Analyses of the ARC and PVN demonstrated that sucrose in the diet had no effect on mRNA levels of opioid peptides. The lack of an opioid response in the ARC and PVN suggests that opioids in the ARC and PVN are involved in energy regulation rather than in mediating hedonic aspects of feeding.
Resumo:
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.
Resumo:
β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.
Resumo:
Background: Providing appropriate rehabilitation services for Acquired Brain Injury (ABI) in childhood presents a number of challenges for caregivers, health and education professionals and the young person as they develop.
Primary Objective: To record the challenges and possible creative solutions generated by an international group of professionals to address the needs of children with ABI.
Review of Information: Recommendations were generated from children’s special interest group meetings of the International Brain Injury Association (Turin Italy, 2001, Stockholm Sweden, 2003, Melbourne Australia, 2005, Lisbon Portugal, 2008) and through meetings of the International Paediatric Brain Injury Society (IPBIS), formed in 2009. Delegates participating in the workshops were representative of nations from around the world and included The Netherlands, New Zealand, Australia, UK, Finland, Germany, South Africa, USA, Canada, Sweden, Brazil and Italy.
Outcomes: The information presented is based on a retrospective review of those meetings and the summaries of the topics considered.