955 resultados para Bismuth ferrite thin film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of physical properties of matter has progressed so much during the last hundred years. Today physics is divided in to a large distinct group of special branches. These branches are distinguished by the particular area studied, method of investigation and so on. An independent and important branch that has developed is the physics ofthin films.Any object in solid or liquid form with one of its dimensions very much smaller than that of the other two may be called a thin film. It is having only one common property, namely, one of their dimensions is very small, though all their physical properties may be different. Thin layers of oil, floating on the surface of water, with their fascinating colours, have attracted men’s curiosity from time immemorial. The earliest application of thin films was the protective coatings in the form of paints. A thin layer of tin has been used from ancient times to protect copper utensils from corrosion. Indium thin films are used in certain applications on account of their good lubricating property. Relay contacts are coated with thin films of rare earth metals in order to prevent burning due to arcing. Hard coatings are also available using diamond like carbon (i-carbon). The basic properties of thin films are of considerable interest because of their potential applications in various fields of science and technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical properties of ac plasma polymerized aniline thin films are investigated with a view of determining the dominant conduction mechanism. The current–voltage (I–V) characteristics in symmetric and asymmetric electrode configuration for polyaniline thin films in the thickness range from 1300 to 2000 A ° are investigated. From the studies on asymmetric electrode configuration, it is found that the dominant conduction mechanism in these films is of Schottky type

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe–Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag8+ ions at room temperature with fluences ranging from 1 1012 to 3 1013 ions/cm2 using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion SHI bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co–Fe–Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layer sinper pendicular recording mediatomagneto-electro-mechanical sensor applications.In this workt he effect of annealing on s tructural,morphologicaland magnetic propertiesofco–Fe–Si thin films wasinvestigated.compositional analysis using x-rayphotoelectron spectroscopy and secondary ion massspectroscopyrevealedanativeoxidesurfacelayerconsistingofoxidesofco,feandsionthe surface. The morphology of theas deposited films shows mound like structures conformingtothe Volmer–Webergrowthmodel.Nanocrystallisationofamorphous films upon annealing was observed by glancing anglex-raydiffraction and transmission electron microscopy.Theevolutionofmagnetic properties with annealing is explained using the Herzermodel.Vibrating sample magnetometry measurements carried out at various angles from01 to 901 to the applied magnetic field were employed to study the angula rvariation of coercivity.The angular variation fits the modified Kondorsky model. Interestingly,the coercivity evolution with annealing deduced frommagneto-opticalKerreffectstudies indicates areversetrendcomparedtomagetisationobservedinthebulk.Thiscanbeattributedtoa domain wallpinningatnativeoxidelayeronthesurfaceofthin films. Theevolutionofsurfacemagnetic properties iscorrelatedwithmorphologyevolutionprobedusingatomicforcemicroscopy.The morphology aswellasthepresenceofthenativeoxidelayerdictatesthesurfacemagneticproperties and this is corroborated by the apparent difference in the bulk and surface magnetic properties

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of chlorine doping on the opto-electronic properties of β-In2S3 thin film, deposited by spray pyrolysis technique is studied for the first time. Chlorine was incorporated in the spray solution, using HCl. Pristine sample prepared using In(NO3)3 and thiourea as the precursors showed very low photosensitivity. But upon adding optimum quantity of chlorine, the photosensitivity increased by 3 orders. X-ray analysis revealed that crystallinity was also increasing up to this optimum level of Cl concentration. It was also observed that samples with high photosensitivity were having higher band gap. The present study proved that doping with chlorine was beneficial as this could result in forming crystalline and photosensitive films of indium sulfide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

b-In2S3 thin filmsweredepositedonIndiumTinOxidesubstratesusingtheChemical SprayPyrolysistechnique.Metalcontactwasdepositedoverthe b-In2S3 thin filmto formahetero-structureofthetypeITO/b-In2S3/Metal.Theintensityoftwophoto- luminescenceemissionsfromthe b-In2S3 thin film,centeredat520and690nmcould be variedbytheapplicationofanexternalbiasvoltagetothishetero-structure.The emissionscouldbeswitchedonoroffdependinguponthemagnitudeoftheexternal appliedbiasvoltage.Thusthepresenceoftwoconductingstatesinthishetero-structure could beidentified.Thetemporalvariationinintensityofthephotoluminescence emissionwiththeapplicationofthebiasvoltagehasalsobeenstudied.Thecondition underwhichphotoluminescencequenchingoccurshasbeenrepresentedbyafirst order differentialequationbetweendiffusionlengthandcarrierconcentration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical thin films are coatings of amorphous, crystalline or polymerized materials, in single or multiple layers, on surfaces of optical components such as lenses and mirrors. These thin film coatings are used in optics to reduce reflections from optical parts (antireflection coatings) or to provide highly reflective surfaces (dielectric mirrors), as well as to protect components against abrasion and ambient moisture.