961 resultados para Ben Chifley
Resumo:
O teor de C orgânico total do solo (COT) pode ser determinado por métodos que se baseiam nos princípios de combustão a seco e combustão úmida. Ambos apresentam inconvenientes, principalmente o de combustão úmida, que exige grande quantidade de reagentes, gerando, por conseqüência, alta quantidade de resíduos tóxicos que contêm Cr. O método denominado Mebius no bloco de digestão (Mebius no bloco) permite a diminuição do uso de dicromato de potássio em análises de solo. Nesse sentido, o presente estudo objetivou verificar a precisão e exatidão do método Mebius no bloco em relação a outros de combustão úmida e o de combustão a seco. O trabalho foi realizado na Universidade Federal de Santa Maria, em duas etapas: os teores de COT foram determinados em 18 amostras de duas camadas (0-5 e 5-10 cm) de um Latossolo Vermelho distrófico típico com diferentes usos. Os métodos usados foram Walkley-Black, Mebius modificado, Mebius no bloco e por captura de CO2; os teores de COT foram determinados por combustão a seco e Mebius no bloco em 75 amostras coletadas nos horizontes A1 (0-7,5 e 7,5-15 cm), A2, E e Bt de um Argissolo Vermelho-Amarelo distrófico abrúptico submetido a cinco sistemas de manejo e três repetições. A precisão apresentada pelos métodos de combustão úmida é similar e com coeficiente de variação abaixo de 10 %, com exceção do método de captura de CO2, que apresentou valores de COT inferiores aos dos demais e com maior coeficiente de variação. O método Mebius no bloco permite processar maior número de amostras por tempo, com menor consumo de reagentes, e seus resultados apresentam boa precisão (coeficiente de variação menor que 2,60 %) entre os métodos de combustão úmida testados. Um fator de correção de 1,14 deverá ser aplicado aos resultados obtidos pelo método Mebius no bloco para equivaler aos obtidos por combustão a seco (analisador elementar de carbono).
Resumo:
In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time scales and using a variety of biological interventions. In all instances elastic stresses dominated at frequencies below 300 Hz, increased only weakly with frequency, and followed a power law; no characteristic time scale was evident. Frictional stresses paralleled the elastic behavior at frequencies below 10 Hz but approached a Newtonian viscous behavior at higher frequencies. Surprisingly, all data could be collapsed onto master curves, the existence of which implies that elastic and frictional stresses share a common underlying mechanism. Taken together, these findings define an unanticipated integrative framework for studying protein interactions within the complex microenvironment of the cell body, and appear to set limits on what can be predicted about integrated mechanical behavior of the matrix based solely on cytoskeletal constituents considered in isolation. Moreover, these observations are consistent with the hypothesis that the cytoskeleton of the living cell behaves as a soft glassy material, wherein cytoskeletal proteins modulate cell mechanical properties mainly by changing an effective temperature of the cytoskeletal matrix. If so, then the effective temperature becomes an easily quantified determinant of the ability of the cytoskeleton to deform, flow, and reorganize.
Resumo:
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 ¿m magnetite beads obtaining forces up to ~2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Resumo:
We investigated the rheological properties of living human airway smooth muscle cells in culture and monitored the changes in rheological properties induced by exogenous stimuli. We oscillated small magnetic microbeads bound specifically to integrin receptors and computed the storage modulus (G') and loss modulus (G") from the applied torque and the resulting rotational motion of the beads as determined from their remanent magnetic field. Under baseline conditions, G' increased weakly with frequency, whereas G" was independent of the frequency. The cell was predominantly elastic, with the ratio of G" to G' (defined as eta) being ~0.35 at all frequencies. G' and G" increased together after contractile activation and decreased together after deactivation, whereas eta remained unaltered in each case. Thus elastic and dissipative stresses were coupled during changes in contractile activation. G' and G" decreased with disruption of the actin fibers by cytochalasin D, but eta increased. These results imply that the mechanisms for frictional energy loss and elastic energy storage in the living cell are coupled and reside within the cytoskeleton.
Resumo:
We report a scaling law that governs both the elastic and frictional properties of a wide variety of living cell types, over a wide range of time scales and under a variety of biological interventions. This scaling identifies these cells as soft glassy materials existing close to a glass transition, and implies that cytoskeletal proteins may regulate cell mechanical properties mainly by modulating the effective noise temperature of the matrix. The practical implications are that the effective noise temperature is an easily quantified measure of the ability of the cytoskeleton to deform, flow, and reorganize.
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
Resumo:
George O. Hurley is the author and Ben J. Shambaugh is the editor of this document, which is also called Bulletin of Information Series No.10 published by the State Historical Society of Iowa. The purpose of this bulletin is to offer a practical discussion of some of the problems involved in the writing, organization and production of a community pageant which is defined as a community institution, such as churches, schools, chambers of commerce, woman's clubs, lodges and other organizations may us pageantry to advantage and profit. A bibliography is included.
Resumo:
Alleles and haplotypes frequencies for 10 Y-chromosome STR loci (DYS19, DYS385 I/II, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438 and DYS439), included in the Y-Plex6 and Y-Plex5 kits were determined for a Tunisian population sample of 100 male individuals.
Resumo:
Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Resumo:
Introduction: Evidence-based medicine (EBM) improves the quality of health care. Courses on how to teach EBM in practice are available, but knowledge does not automatically imply its application in teaching. We aimed to identify and compare barriers and facilitators for teaching EBM in clinical practice in various European countries. Methods: A questionnaire was constructed listing potential barriers and facilitators for EBM teaching in clinical practice. Answers were reported on a 7-point Likert scale ranging from not at all being a barrier to being an insurmountable barrier. Results: The questionnaire was completed by 120 clinical EBM teachers from 11 countries. Lack of time was the strongest barrier for teaching EBM in practice (median 5). Moderate barriers were the lack of requirements for EBM skills and a pyramid hierarchy in health care management structure (median 4). In Germany, Hungary and Poland, reading and understanding articles in English was a higher barrier than in the other countries. Conclusion: Incorporation of teaching EBM in practice faces several barriers to implementation. Teaching EBM in clinical settings is most successful where EBM principles are culturally embedded and form part and parcel of everyday clinical decisions and medical practice.
Resumo:
Objectives This paper reports on a longitudinal qualitative study exploring concerns of 60 patients before and after transplantation. Methods Semi-structured interviews were conducted without time constraints in a protected space out of the hospital. Qualitative analysis was performed. Results Prior to transplantation, all patients talked freely about negative feelings, stigmatisation, being misunderstood by others, loneliness and culpability caused by increasing physical dependency or abandoned roles. They mentioned alternative ways to cope (magic, spirituality), and even expressed their right to let go. In a subset of 13 patients, significant ones allowed themselves in the interview, or were integrated on the request of the patients. In this modified setting, two illness-worlds were confronted. If common themes were mentioned (e.g., modified life plans, restricted space, physical and psychological barriers), they were experienced differently. Fear of transplantation or guilt towards the donors was overtly expressed, often for the first time. Mutual hiding of anxiety in order to protect loved ones or to prevent loss of control was disclosed. The significant ones talked about accumulated stress and exhaustion related to the physical degradation of the patient, fear of the unpredictable evolution of illness and financial problems, and stressed their difficulty to adapt adequately to the fluctuating state of the patient. After transplantation, other themes emerged, where difficulty in disclosure was observed: intensive care and near death experiences, being a transplanted person, debt to the donor and his/her family, fear of rejection. Conclusions With the self-imposed strategy of hiding concerns to protect one another, a discrepancy between two illness-worlds was created. When concerns were confronted during the interviews, a new mutual understanding emerged. Patients and their families stated the need for sharing concerns in the course of illness.