967 resultados para Average Method
Resumo:
Taylor (1948) suggested the method for determination of the settlement, d, corresponding to 90% consolidation utilizing the characteristics of the degree of consolidation, U, versus the square root of the time factor, square root of T, plot. Based on the properties of the slope of U versus square root of T curve, a new method is proposed to determine d corresponding to any U above 70% consolidation for evaluation of the coefficient of consolidation, Cn. The effects of the secondary consolidation on the Cn value at different percentages of consolidation can be studied. Cn, closer to the field values, can be determined in less time as compared to Taylor's method. At any U in between 75 and 95% consolidation, Cn(U) due to the new method lies in between Taylor's Cn and Casagrande's Cn.
Resumo:
Balconies, as one of the main architectural features in subtropical climates, are assumed to enhance the ventilation performance of buildings by redirecting the wind. Although there are some studies on the effect of balconies on natural ventilation inside buildings, the majority have been conducted on single zone buildings with simple geometries. The purpose of this study is to explore the effect of balconies on the internal air flow pattern and ventilation performance of multi-storey residential buildings with internal partitions. To this end, a sample residential unit was selected for investigation and three different conditions tested, base case (no balcony), an open balcony and a semi-enclosed balcony. Computational Fluid Dynamics is used as an analysis method due to its accuracy and ability to provide detailed results. The cases are analysed in terms of average velocity, flow uniformity and number of Air Changes per Hour (ACH). The results suggest the introduction of a semi-enclosed balcony into high-rise dwellings improves the average velocity and flow uniformity. Integrating an open balcony results in reduction of the aforementioned parameters at 0° wind incidence.
Resumo:
A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP2O7]4H(2)O and [Co(en)(2)H2P3O10]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.
Resumo:
A one step, clean and efficient, conversion of arylaldehydes, ketones and ketals into the corresponding hydrocarbon using ionic hydrogenation conditions employing sodium cyanoborohydride in the presence of two to three equivalents of BF3. OEt(2) is described.
Resumo:
Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Resumo:
Arc discharge between graphite electrodes under a relatively high pressure of hydrogen yields graphene flakes generally containing 2-4 layers in the inner wall region of the arc chamber. The graphene flakes so obtained have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and Raman spectroscopy. The method is eminently suited to dope graphene with boron and nitrogen by carrying out arc discharge in the presence of diborane and pyridine respectively.
Resumo:
It is shown that prop-2-ynyl esters are useful protecting groups for carboxylic acids and that they are selectively deprotected in the presence of other esters on treatment with tetrathiomolybdate under mild conditions.
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
Unsteady natural convection flow in a two- dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left- hand vertical wall has temperature T-h and the right- hand vertical wall is maintained at temperature T-c ( T-h > T-c) and the horizontal walls are insulated. At time t > 0, the left- hand vertical wall temperature is suddenly raised to (T-h) over bar ((T-h) over bar > T-h) which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.
Resumo:
Quantifying the stiffness properties of soft tissues is essential for the diagnosis of many cardiovascular diseases such as atherosclerosis. In these pathologies it is widely agreed that the arterial wall stiffness is an indicator of vulnerability. The present paper focuses on the carotid artery and proposes a new inversion methodology for deriving the stiffness properties of the wall from cine-MRI (magnetic resonance imaging) data. We address this problem by setting-up a cost function defined as the distance between the modeled pixel signals and the measured ones. Minimizing this cost function yields the unknown stiffness properties of both the arterial wall and the surrounding tissues. The sensitivity of the identified properties to various sources of uncertainty is studied. Validation of the method is performed on a rubber phantom. The elastic modulus identified using the developed methodology lies within a mean error of 9.6%. It is then applied to two young healthy subjects as a proof of practical feasibility, with identified values of 625 kPa and 587 kPa for one of the carotid of each subject.
Resumo:
Growth rate of abdominal aortic aneurysm (AAA) is thought to be an important indicator of the potential risk of rupture. Wall stress is also thought to be a trigger for its rupture. However, stress change during the expansion of an AAA is unclear. Forty-four patients with AAAs were included in this longitudinal follow-up study. They were assessed by serial abdominal ultrasonography and computerized tomography (CT) scans if a critical size was reached or a rapid expansion occurred. Patient-specific 3-dimensional AAA geometries were reconstructed from the follow-up CT images. Structural analysis was performed to calculate the wall stresses of the AAA models at both baseline and final visit. A non-linear large-strain finite element method was used to compute the wall stress distribution. The average growth rate was 0.66cm/year (range 0-1.32 cm/year). A significantly positive correlation between shoulder tress at baseline and growth rate was found (r=0.342; p=0.02). A higher shoulder stress is associated with a rapidly expanding AAA. Therefore, it may be useful for estimating the growth expansion of AAAs and further risk stratification of patients with AAAs.
Resumo:
Rupture of atherosclerotic plaque is a major cause of mortality. Plaque stress analysis, based on patient-specific multisequence in vivo MRI, can provide critical information for the understanding of plaque rupture and could eventually lead to plaque rupture prediction. However, the direct link between stress and plaque rupture is not fully understood. In the present study, the plaque from a patient who recently experienced a transient ischaemic attack (TIA) was studied using a fluid-structure interaction method to quantify stress distribution in the plaque region based on in vivo MR images. The results showed that wall shear stress is generally low in the artery with a slight increase at the plaque throat owing to minor luminal narrowing. The oscillatory shear index is much higher in the proximal part of the plaque. Both local wall stress concentrations and the relative stress variation distribution during a cardiac cycle indicate that the actual plaque rupture site is collocated with the highest rupture risk region in the studied patient.
Resumo:
The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.