985 resultados para Applied mathematics


Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present matrices over unitary finite commutative local rings connected through an ascending chain of containments, whose elements are units of the corresponding rings in the chain such that the McCoy ranks are the largest ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present some considerations about cohomology of finite groups. In the first part we use the restriction map in cohomology to obtain some results about subgroups of finite index in a group. In the second part, we use Tate cohomology to present an application of the theory of groups with periodic cohomology in topology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the cohomology theory of groups, Andrade and Fanti defined in [1] an algebraic invariant, denoted by E(G,S, M), where G is a group, S is a family of subgroups of G with infinite index and M is a Z2G-module. In this work, by using the homology theory of groups instead of cohomology theory, we define an invariant ``dual'' to E(G, S, M), which we denote by E*(G, S, M). The purpose of this paper is, through the invariant E*(G, S, M), to obtain some results and applications in the theory of duality groups and group pairs, similar to those shown in Andrade and Fanti [2], and thus, providing an alternative way to get applications and properties of this theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work has the scope to show the Laurent Series for quaternionic functions. It will be shown that the Laurent Series for the Quaternionic Case is analogous to the textbook case of Complex Analysis [1]-[2] already well established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of this work is find a description for fields of two power conductor. By the Kronecker-Weber theorem, these amounts to find the subfields of cyclotomic field $\mathbb{Q}(\xi_{2^r})$, where $\xi_{2^r}$ is a $2^r$-th primitive root of unit and $r$ a positive integer. In this case, the cyclotomic extension isn't cyclic, however its Galois group is generated by two elements and the subfield can be expressed by $\mathbb{Q}(\theta)$ for a $\theta\in\mathbb{Q}(\xi_{2^r})$ convenient.