962 resultados para Antinuclear antibodies
Resumo:
We report the case of a boy with an encephalopathy associated with extrapyramidal and psychiatric symptoms and anti-N-methyl-D-aspartate receptor antibodies. He had positive serum antithyroid antibodies, IgM antibodies against Mycoplasma pneumoniae and human herpesvirus 7 polymerase chain reaction in the cerebrospinal fluid. He was successfully treated with rituximab, after steroids, intravenous immunoglobulin and plasma exchange. The pathophysiology of this disorder may be post-infectious and autoimmune.
Resumo:
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Resumo:
SOUZA,Roberto Mascarenhas et al.Presence of antibodies against Leishmania chagasi in haemodialysed patients.Transactions of the Royal Society of Tropical Medicine and Hygiene,v. 103, p.749-751, 2009.
Resumo:
BACKGROUND: Pretransplant anti-HLA donor-specific antibodies (DSA) are recognized as a risk factor for acute antibody-mediated rejection (AMR) in kidney transplantation. The predictive value of C4d-fixing capability by DSA or of IgG DSA subclasses for acute AMR in the pretransplant setting has been recently studied. In addition DSA strength assessed by mean fluorescence intensity (MFI) may improve risk stratification. We aimed to analyze the relevance of preformed DSA and of DSA MFI values. METHODS: 280 consecutive patients with negative complement-dependent cytotoxicity crossmatches received a kidney transplant between 01/2008 and 03/2014. Sera were screened for the presence of DSA with a solid-phase assays on a Luminex flow analyzer, and the results were correlated with biopsy-proven acute AMR in the first year and survival. RESULTS: Pretransplant anti-HLA antibodies were present in 72 patients (25.7%) and 24 (8.6%) had DSA. There were 46 (16.4%) acute rejection episodes, 32 (11.4%) being cellular and 14 (5.0%) AMR. The incidence of acute AMR was higher in patients with pretransplant DSA (41.7%) than in those without (1.6%) (p<0.001). The median cumulative MFI (cMFI) of the group DSA+/AMR+ was 5680 vs 2208 in DSA+/AMR- (p=0.058). With univariate logistic regression a threshold value of 5280 cMFI was predictive for acute AMR. DSA cMFI's ability to predict AMR was also explored by ROC analysis. AUC was 0.728 and the best threshold was a cMFI of 4340. Importantly pretransplant DSA>5280 cMFI had a detrimental effect on 5-year graft survival. CONCLUSIONS: Preformed DSA cMFI values were clinically-relevant for the prediction of acute AMR and graft survival in kidney transplantation. A threshold of 4300-5300 cMFI was a significant outcome predictor.
Resumo:
SOUZA, R. M. et al. Presence of antibodies against Leishmania chagasi in haemodialysed patients. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 103, n.7, p. 749—751. ISSN 0035-9203.
Resumo:
Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.
Resumo:
Monoclonal antibodies and novel antibody formats are currently one of the principal therapeutic in the biopharmaceutical industry worldwide and are widely used in the treatment of autoimmune diseases and cancer. It is for this reason that the productivity and quality of antibody production requires improvement; specifically investigations into the engineering of antibodies and any issues that may arise from the production of these therapeutics. The work presented in this thesis describes an investigation into the folding and assembly of seven antibodies plus the novel antibody format FabFv. IgG is comprised of two identical HCs and two identical LCs. The folding process of immunoglobulin is controlled by the CH1 domain within the HC. The CH1 domain remains in a disordered state and is sequestered by BiP in the endoplasmic reticulum. Upon the addition of a folded CL domain, BiP is displaced, the CH1 domain is able to fold and the complete IgG protein can then be secreted from the cell. The results presented in this thesis however, have outlined an additional mechanism for the folding of the CH1 domain. We have shown that the CH1 domain is able to fold in the absence of LC resulting in the secretion of HC dimers in a VH dependent manner. The proposed mechanism for the secretion of HC dimers suggests that some VH domains can interact with each other in order to bring the CH1 domains in close proximity to enable folding to occur. As HC dimer secretion is a hindrance in antibody production, this result has highlighted an engineering target to improve antibody yield. Examination of the folding of IgG4 with the variable region A33 has revealed the inability to secrete LC dimers, cleavage of the HC during expression and secretion of HC dimers in the Fab, FabFv and full length forms. The attributes described have also been shown to be variable region dependent. This has introduced a new concept that the variable domain is important in determining the expression and secretion of antibodies and their individual chains. Pulse chase and 2D gel electrophoresis analysis of the novel antibody format FabFv has revealed that the folding and expression of the LC and HC causes multimeric species of FabFv to be secreted, as opposed to the monomeric form which is the desired therapeutic. Our hypothesis is that this process occurs via a LC dependent mechanism. The proposed hypothesis suggests that further engineering to the LC could diminish the formation and secretion of FabFv multimers. The results from these investigations can be applied to increase the productivity of therapeutics and increase the biological understanding of the domain interactions of IgG during folding, assembly and secretion.
Resumo:
International audience
Resumo:
Dogs play a major role in the domestic cycle of Trypanosoma cruzi, acting as reservoirs. In a previous work we have developed a model of vaccination of dogs in captivity with nonpathogenic Trypanosoma rangeli epimastigotes, resulting in the production of protective antibodies against T. cruzi, with dramatic decrease of parasitaemia upon challenge with 100,000 virulent forms of this parasite. The aim of this work was to evaluate the immunogenicity of this vaccine in dogs living in a rural area. Domestic dogs, free from T. cruzi infection, received three immunisations with fixed T. rangeli epimastigotes. Dogs were not challenged with T. cruzi, but they were left in their environment. This immunisation induced antibodies against T. cruzi for more than three years in dogs in their natural habitat, while control dogs remained serologically negative.
Resumo:
Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015
Resumo:
Poster presented at the 7th iMed.ULisboa Postgraduate Students Meeting. Lisbon, 15 July 2015
Resumo:
This is a non-final version of an article published in final form in AIDS. 2016 Jul 17;30(11):1691-701.
Resumo:
In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.