930 resultados para Alcoholic yeast.
Resumo:
Background: Non-alcoholic steatohepatitis (NASH) is a chronic liver disease that is capable of progressing to end-stage liver disease, but generally has a benign course. Non-alcoholic steatohepatitis (NASH) is a growing public health problem with no approved therapy. NASH projected to be the leading cause of liver transplantation in the United States by 2020. Obesity, non-insulin-dependent diabetes mellitus and hyperlipidaemia are the most common associations of the disease. Global prevalence of NASH is 10-24% amongst general population but increases to 25-75% in obese diabetic individuals. Objective: There is an urgent need for efficient therapeutic options as there is still no approved medication. The aim of this study was to detect changes in biochemical parameters including insulin resistance, cytokines, blood lipid profile and liver enzymes following weight loss in patients with non-alcoholic steatohepatitis. Materials and methods: One hundred obese patients with NASH, their age between 35-50 years, body mass index (BMI) from 30 to 35 Kg/m2 were included in the study in two subgroups; the first group (A) received moderate aerobic exercise training in addition to diet regimen , where the second group (B) received no treatment intervention. Results: The mean values of leptin, TNF-α, IL6, IL8, Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Homeostasis Model Assessment-Insulin Resistance- index (HOMA-IR), Total Cholesterol (TC), Low Density Lipoprotein Cholesterol (LDL-c) , Triglycerides (TG) and BMI were significantly decreased in group (A), where the mean value of Adiponectin and High Density Lipoprotein Cholesterol (HDL-c) were significantly increased, while there were no significant changes in group (B). Also, there was a significant difference between both groups at the end of the study. Conclusion: Weight loss modulates insulin resistance, adiponectin, leptin, inflammatory cytokine levels and markers of hepatic function in patients with nonalcoholic steatohepatitis.
Resumo:
International audience
Resumo:
Cassava root is the main staple for 70% of the population in Mozambique, particularly in inaccessible rural areas, but is known to be low in iron. Anaemia is a public health problem in mothers and preschool children in Mozambique and up to 40% of these cases are probably due to dietary iron deficiency. The World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) recognize the fortification of foodstuff as an effective method to remedy dietary deficiencies of micronutrients, including iron. Cassava mahewu, a non-alcoholic fermented beverage is prepared at subsistence level from cassava roots using indigenous procedures. The aim of the study was to standardize mahewu fermentation and investigate if the type of cassava fermented, or the iron compound used for fortification affected the final product. Roots of sweet and bitter varieties of cassava from four districts (Rapale, Meconta, Alto Molocue and Zavala) in Mozambique, were peeled, dried and pounded to prepare flour. Cassava flour was cooked and fermented under controlled conditions (45°C for 24 h). The fermentation period and temperature were set, based on the findings of a pilot study which showed that an end-point pH of about 4.5 was regularly reached after 24 h at 45°C. Cassava mahewu was fortified with ferrous sulfate (FeSO4.7H2O) or ferrous fumarate (C4H2FeO4) at the beginning (time zero) and at the end of fermentation (24 h). The amount of iron added to the mahewu was based on the average of the approved range of iron used for the fortification of maize meal. The mean pH at the endpoint was 4.5, with 0.29% titratable acidity. The pH and acidity were different to those reported in previous studies on maize mahewu, whereas the solid extract of 9.65% was found to be similar. Lactic acid bacteria (LAB) and yeast growth were not significantly different in mahewu fortified with either of the iron compounds. There was no significant difference between cassava mahewu made from bitter or sweet varieties. A standard method for preparation and iron fortification of cassava mahewu was developed. It is recommended that fortification occurs at the end of fermentation when done at household level.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
The aim of this study was to identify Candida species isolated from women diagnosed with recurrent vulvovaginal candidiasis (RVVC) and their partners; and to evaluate the fluconazole (FLZ) susceptibility of the isolates. In a period of six years, among 172 patients diagnosed with vulvovaginal candidiasis, 13 women that presented RVVC and their partners were selected for this investigation. The isolates were obtained using Chromagar Candida medium, the species identification was performed by phenotypic and molecular methods and FLZ susceptibility was evaluated by E-test. Among 26 strains we identified 14 Candida albicans , six Candida duobushaemulonii, four Candida glabrata , and two Candida tropicalis . Agreement of the isolated species occurred in 100% of the couples. FLZ low susceptibility was observed for all isolates of C. duobushaemulonii (minimal inhibitory concentration values from 8-> 64 μg/mL), two C. glabrata isolates were FLZ-resistant and all C. albicans and C. tropicalis isolates were FLZ-susceptible. This report emphasises the importance of accurate identification of the fungal agents by a reliable molecular technique in RVVC episodes besides the lower antifungal susceptibility profile of this rare pathogen C. duobushaemulonii to FLZ.
Resumo:
Purpose: To assess the efficacy of the BARD scoring system in Saudi non‐alcoholic fatty liver disease (NAFLD) patients attending Gizan General Hospital and to identify the clinical variables associated with advanced fibrosis. . Methods: The cross-sectional study involved 120 patients aged ≥ 18 years who attended the Ultrasound Department of Gizan General Hospital, Gizan, Saudi Arabia, during January – June 2013. BARD scoring system comprised the following variables: body mass index (BMI) ≥ 28 = 1 point, aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio ≥ 0.8 = 2 points, and type 2 diabetes mellitus = 1 point. Results: Patients with advanced fibrosis were older (55.0 years) than patients with no/mild fibrosis (48.6 years), albeit not significantly so. A higher BMI was associated with advanced fibrosis in males, females and all study participants (p = 0.013, 0.016 and 0.001, respectively). Advanced fibrosis was more common in older patients with a higher weight to height ratio. Logistic regression suggested that age ≥ 50 years was associated with a 2.52-fold increase in the risk of advanced fibrosis, but this did not have a significant clinical impact (p = 0.087). BMI > 28 was associated with a 26.73-fold increased risk of advanced fibrosis, while AST/ALT ≥ 0.8 was associated with an 18.46-fold increased risk of advanced liver fibrosis (p = 0.002 and 0.006, respectively). Conclusion: The major risk factors for advanced fibrosis using BARD scoring system in patients with NAFLD were old age, BMI > 28, and AST/ALT ≥ 0.8. In addition, grade 3 ultrasonographic fatty liver significantly correlated with advanced fibrosis.
Resumo:
A yeast strain (CBS 8902) was isolated from the nest of a leaf-cutting ant and was shown to be related to Cryptococcus humicola. Sequencing of the D1/D2 region of the 26S ribosomal DNA and physiological characterization revealed a separate taxonomic position. A novel species named Cryptococcus haglerorum is proposed to accommodate strain CBS 8902 that assimilates n-hexadecane and several benzene compounds. Physiological characteristics distinguishing the novel species from some other members of the C. humicola complex are presented. The phylogenetic relationship of these strains to species of the genus Trichosporon Behrend is discussed.
Resumo:
Four strains of a novel yeast species were isolated from laboratory nests of the leaf-cutting ant Atta sexdens in Brazil. Three strains were found in older sponges and one was in a waste deposit in the ant nests. Sequencing of the D1/D2 region of the large-subunit rRNA gene showed that the novel species, named Sympodiomyces attinorum sp. nov., is phylogenetically related to Sympodiomyces parvus. Unlike Sympodiomyces parvus, Sympodiomyces attinorum can ferment glucose, assimilate methyl alpha-D-glucoside, salicin and citrate, and grow at 37 degreesC, thus enabling these two species to be distinguished. Differentiation from other related species is possible on the basis of other growth characteristics. The type strain of Sympodiomyces attinorum is UNESP-S156(T) (=CBS 9734(T)=NRRL Y-27639(T)).
Resumo:
Grape metabolites can be affected by many extrinsic and intrinsic factors, such as grape variety, ripening stage, growing regions, vineyard management practices, and edaphoclimatic conditions. However, there is still much about the in vivo formation of grape metabolites that need to be investigated. The winemaking process also can create distinct wines. Nowadays, wine fermentations are driven mostly by single-strain inoculations, allowing greater control of fermentation. Pure cultures of selected yeast strains, mostly Saccharomyces cerevisiae, are added to grape must, leading to more predictable outcomes and decreasing the risk of spoilage. Besides yeasts, lactic acid bacteria also play an important role, in the final wine quality. Thus, this chapter attempts to present an overview of grape berry physiology and metabolome to provide a deep understanding of the primary and secondary metabolites accumulated in the grape berries and their potential impact in wine quality. In addition, biotechnological approaches for wine quality practiced during wine alcoholic and malolactic fermentation will also be discussed.
Resumo:
Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the Stransfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.
Resumo:
Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG. Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.
Resumo:
O amido é o polissacarídeo mais abundante presente em plantas, composto por amilose e amilopectina. O amido de milho ceroso apresenta somente amilopectina. A modificação do amido é recomendada para melhorar suas aplicações. A hidrólise ácida é utilizada para alterar as propriedades físico-químicas sem modificar o grânulo e o meio alcoólico ajuda na recuperação da molécula após o tratamento. O objetivo do trabalho foi o tratamento químico com HCl 0,5 mol L-1 durante 1 hora em 100 ml de água, etanol ou metanol. Os equipamentos SETSYS Evolução TGADTA / DSC e Rápido Visco-Analisador (RVA-4) foram usados para avaliar as alterações dos amidos. As curvas TG mostraram três eventos (desidratação, estabilidade e decomposição), com resultados similares para todas as amostras. Este resultado pode estar relacionado a resistência da amilopectina para a hidrólise ácida. Na análise reológica (RVA) o tratamento das amostras mostrou valores mais baixos de perfis de viscosidade. A solução ácida forneceu mudanças nas propriedades de pasta do amido e a solução etanólica (solvente mais apolar) foi maior que as demais soluções. Conclui-se portanto que o tratamento dos amidos forneceu produtos com características térmicas similares e com diferentes respostas mecânicas