992 resultados para Active electrode
Resumo:
A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.
Resumo:
Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.
Resumo:
An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).
Resumo:
A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.
Resumo:
Single-walled carbon nanohorn (SWCNH) paste electrode was used for amperometric determination of concentrated hydrogen peroxide, and was compared with other carbon electrodes. The calibration plots are linear from 0.5 to 100 mM at activated SWCNH paste electrode and edge plane graphite (EPG) electrode. In contrast, the calibration plots are linear only at concentrations lower than 45 mM at graphite paste electrode, multi-walled carbon nanotube paste electrode, and glassy carbon electrode.
Resumo:
Five novel vanadium(III) complexes [PhN = C(R-2)CHC(R-1)O]VCl2(THF)(2) (4a: R-1 = Ph, R-2 = CF3; 4b: R-1 =t-Bu, R-2 = CF3; 4c: R-1 = CF3, R-2 = CH3; 4d: R-1 = Ph, R-2 = CH3; 4e: R-1 = Ph, R-2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolv h bar and weight-average molecular weights higher than 173 kg/ mol were observed under mild conditions.
Resumo:
The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine (FeTSPc) modified Pt electrode was investigated with electrochemical methods. It was found that a "third-body" effect of FeTSPc on Pt electrode predominates during the electrooxidation process based on unusual electrochemical results. The modification leads formic acid electrooxidation to take place through a desired direct pathway, in which the mechanism is proposed to be the gradual dehydrogenation of formic acid and the reaction of formate with hydroxyl species.
Resumo:
The hybrid material based on WO3 and Vulcan XC-72R carbon has been used as the support of Pd nano-catalysts. The resultant Pd-WO3/C catalysts in a large range of WO3 content exhibit excellent catalytic activity and stability for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the uniform dispersion of Pd with less particle sizes on the WO3/C support and the hydrogen spillover effect which greatly accelerates the dehydrogenation of HCOOH on Pd.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.
Self-assembly of lambda-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate
Resumo:
In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.
Resumo:
A controllable silver nanoparticle aggregate system has been synthesized by adding different amounts of ethanol to cetyltrimethylammonium bromide (CTAB) capped silver nanoparticles (Ag-nps), which could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. This ethanol-induced aggregation can be attributed to preferential dissolution of CTAB into ethanol, which leads a partial removal of the protective CTAB layer on Ag-nps. The optical and morphological properties of these aggregates under various volumes of ethanol were explored via UV-vis spectroscopy and atomic force microscopy.
Resumo:
Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films.
Resumo:
Single-walled carbon nanohorns (SWCNHs) were used as a novel and biocompatible matrix for fabricating biosensing devices. The direct immobilization of acid-stable and thermostable soybean peroxidase (SBP) on SWCNH modified electrode surface can realize the direct electrochemistry of enzyme. Cyclic voltammogram of the adsorbed SBP displays a pair of redox peaks with a formal potential of -0.24V in pH 5 phosphate buffer solution.
Resumo:
Very low hysteresis vanadyl-phthalocyanine/para-sexiphenyl thin-film transistors (TFTs) have been fabricated using benzocyclobutenone (BCBO) derivatives/tantalum pentoxide (Ta2O5)/BCBO triple gate dielectrics. The field effect mobility, on/off current ratio and threshold voltage of organic TFTs are 0.45 cm(2) V-1 s(-1), 3.5 x 10(4) and -6.8 V, respectively. To clarify the mechanism of hysteresis, devices with different dielectrics have been studied. It is found that the bottom BCBO derivatives (contact with a gate electrode) block the electron injection from a gate electrode to dielectrics.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.