999 resultados para 478-2
Resumo:
(I): Mr= 168, triclinic, P1, Z=2, a= 5.596 (2), b = 6.938 (3), c = 10.852 (4) A, ~t= 75.64 (3), fl= 93.44 (3), ),= 95.47 (3) °, V= 406.0A 3, Din= 1.35 (by flotation using carbon tetrachloride and n-hexane), D x= 1.374 Mg m -3, g(Mo Kct, 2 = 0.7107 A) = 1.08 cm -l, _F(000) = 180, T= 293 K. (II): Mr= 250, triclinic, P1, Z= 2, a = 7.731(2), b=8.580(2), c=11.033(3)A, a= 97-66 (2), fl= 98.86 (2), y= 101.78 (2) °, V= 697.5 A 3, D m = 1.18 (by flotation using KI solution), Dx= 1.190Mgm -3, g(MoKa, 2=0.7107A)= 1.02 cm -1, F(000) = 272, T= 293 K. Both structures were solved by direct methods and refined to R = 4.4% for 901 reflexions for (I) and 5.7% for 2001 reflexions for (II). The C=C bond distances are 1.451 (3) A in (I) and 1.468 (3)A in (II), quite significantly longer than the C=C bond in ethylene [1.336 (2).~; Bartell, Roth, Hollowell, Kuchitsu & Young (1965). J. Chem. Phys. 42, 2683-2686]. The twist angle about the C=C bond in (II) is 72.9 (5) ° but molecule (I) is essentially planar, the twist angle being only 4.9 (5) ° .
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
The dimethoxytetralol gives on Vilsmeier reaction the dihydronaphthaldehyde (yield,92%), which on Grignard reaction with MeMgI affords the title compound (yield,�100%), the reactions constituting a high yield synthesis of this important anthracyclinone intermediate.
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution.
Resumo:
A new hydrazinium uranyl oxalate complex (N2H5)6[(UO2)2(C2O4)5]·2H2O has been prepared and characterized by chemical analysis, infrared, visible spectra and TG-DTA. The single crystal X-ray structure of the complex shows the presence of discrete N2H5+ cations, water molecules and [(UO2)2(C2O4)5]6− anions. In the anion, the linear uranyl groups are coordinated by two chelating bidentate oxalates and one bridging oxalate which lies on the center of symmetry between the two uranyl groups. The coordination polyhedron around each uranium atom is approximately a pentagonal bipyramid.
Resumo:
Mr= 363.17, orthorhombic, P21212 ~, a= 5.251(4), b=14.962(5), c=19.112(5)A, U= 1501.41/k 3, Z=4, Dx=1.61Mgm -3, /t(CuKa)= 3.02 mm -1, 2(Cu Ka)= 1.5418/~, final R = 7.0% for 1091 reflections with Fo> 2e(Fo). The glycosidic torsion angle ZCN is 13"1 (12) °. The ribose has a C (3')-exo,C (4)-endo twist geometry. The dioxolane ring assumes an envelope conformation with 0(3') displaced by 0.453 (10)/k from the plane of the other four atoms. The conformation about the C(4')-C(5') bond is gauche-gauche. The structure is stabilized by two hydrogen bonds between screw-axis-related molecules. The crystal packing and the conformation of the molecule are very similar to those found in the structure of 2',3'-O-isopropylideneuridine which lacks the Br atom at the 5-position.
Resumo:
M r = 438.45, trigonal, P32, a = b = 13.385 (4), c = 9.900 (5) A,, V = 1536.0 A 3, Z = 3, D x = 1.42, D m = 1.42 Mg m -3, 2(Cu Ka) = 1.5418 A,,g(CuKa) = .800mm -], T=290K, F(000)=690, R=6.0% for 1222 unique reflections with F o>_2o(Fo). This is the first 2',3'-O-isopropylidene pyrimidine nucleoside with the base in a syn orientation with respect to the ribose [Xcy= 116.0(7)°]. The ribose has a C(3')-endo conformation with the phase angle of pseudorotation P = 16.36 (2) °. The dioxolane ring assumes an envelope conformation with 0(2') displaced from the best four-atom plane by 0.50 (1) k. The crystal structure is possibly stabilized by a bifurcated hydrogen bond between N(3) and the 0(2) and 0(4) atoms of screw-related molecules.
Resumo:
Chlorine NQR in 2,6-dichloropyridine has been investigated in the temperature range 77 K to room temperature and a single resonance line has been observed throughout. Using this data, torsional frequencies of the molecule have been evaluated on the basis of both the Bayer theory and the modified Bayer theory incorporating Tatsuzaki correction.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).