994 resultados para 1995_01120836 TM-15 4300707
Resumo:
The viscosity ? for eighteen binary mixtures cyclopentane + cyclohexane and + cyclooctane; cyclohexane + cycloheptane, + cyclooctane, + methylcyclohexane, + n-hexane, + n-heptane, + n-octane, + i-octane, + benzene, + toluene, + ethylbenzene, + p-xylene, and + propylbenzene; methylcyclohexane + n-hexane, + i-octane, and + benzene; and cyclooctane + benzene have been reported at 303.15 K over the entire range of composition. The viscosity deviations ?? and excess Gibbs energy of activation ?G*E of viscous flow based on Eyring's theory have been calculated. The effects of molecular sizes and shapes of the component molecules and of interaction energy in the mixture have been discussed. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind, McLaughlin and Ubbelohde, Tamura and Kurata, Katti and Chaudhri, McAllister, Heric and Brewer, and of Auslaender.
Resumo:
Isentropic compressibilities ?S, and excess isentropic compressibilities ?SE have been determined from measurements of speeds of sound u and densities ? of 14 binary mixtures of triethylamine (TEA) and tri-n-butylamine (TBA) with n-hexane, n-octane, iso-octane, n-propylamine, n-butylamine, n-hexylamine and n-octylamine. The relative magnitude and sign of ?SE have been interpreted in terms of molecular interactions and interstitial accommodation. The values of ?SE for TEA + alkane are positive while for TBA + alkane are negative. The values of ?SE for TEA + primary amine become progressively less positive and eventually to negative with the increase in chain length of alkylamine. In case of TBA + primary amine, the values of ?SE increase from n-propylamine to n-butylamine, and then decrease with chain length of primary amine. The experimental speeds of sound u have been analyzed in terms of collision factor theory, free length theory and Prigogine–Flory–Patterson statistical theory of solutions.
Resumo:
The speeds of sound u in, densities ? and refractive indices nD of some homologous series, such as n-alkyl ethanoates, n-alkyl propionates, methyl alkanoates, ethyl alkanoates, dialkyl malonates, and alkyl haloalkanoates, were measured in the temperature range from 298.15 to 333.15 K. Molar volume V, isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, molecular radius r, Rao’s molar function R, thermal expansion coefficient a, thermal pressure coefficient ?, and Flory’s characteristic parameters image, P*, V*, and T* have been calculated from the measured experimental data. Applicability of Rao theory and Flory–Patterson–Pandey (FPP) theory have been examined and discussed for these alkanoates.
Resumo:
The speeds of sound u, isentropic compressibilities ?S, molar sound functions R, excess isentropic compressibilities ?SE and excess molar volumes VE for eight binary mixtures of cyclopentane, cyclohexane, cyclooctane and methylcyclohexane with benzene and of cyclohexane with toluene, ethyl benzene, p-xylene and propyl benzene at 303.15 K are reported. The effects of molecular sizes and shapes of the component molecules and of interaction energy in the mixture have been discussed. The Prigogine–Flory–Patterson theory has been applied to analyze the present binary mixtures along with the mixtures of cis- and trans-decalins with benzene and toluene taken from the literature.
Resumo:
The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.
Resumo:
Isentropic compressibilities, Rao's molar sound functions, molar refractions, excess isentropic compressibilities, excess molar volumes, viscosity deviations and excess Gibbs energies of activation of viscous flow for seven binary mixtures of tetrahydrofuran (THF) with cyclohexane, methylcyclohexane, n-hexane, benzene, toluene, p-xylene and propylbenzene over the entire range of composition at 303.15 K have been derived from experimental densities, speeds of sound, refractive indices and viscosities. The excess partial molar volumes of THF in different solvents have been estimated. The experimental results have been analyzed in terms of the Prigogine–Flory–Patterson theory.
Resumo:
Isentropic compressibilities ?S, excess isentropic compressibilities image, excess molar volumes VE, viscosity deviations ??, and excess Gibbs energy of activation of viscous flow ?G*E for nine binary mixtures of C4H8O with CCl4, CHCl3, CHCl2CHCl2, 1-C6H13Cl, 1-C6H13Br, CH3CO2CH3, CH3CO2C2H5, CH3CO2C4H9, and CH3CO2C5H11 at 303.15 K have been derived from experimental densities ?, speeds of sound u, refractive indexes nD and viscosities ?. The limiting values of excess partial molar volumes of C4H8O at infinite dilution image in different solvents have been estimated. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg–Nissan, Tamura–Kurata, Hind–McLaughlin–Ubbelohde, Katti–Chaudhri, McAllister, Heric, and Auslaender. Finally, the experimental refractive indexes were compared with the predicted results for Lorentz–Lorenz, Dale–Gladstone, Eykman, Arago–Boit, Newton, Oster, Heller, and Wiener equations.
Resumo:
Speeds of sound u, isentropic compressibilities ?S, viscosities ?, excess isentropic compressibilities ?SE, excess molar volumes VE, viscosity deviations ??, and excess Gibbs energies of activation ?G*E of viscous flow have been investigated for six binary mixtures of diethyl malonate, diethyl bromomalonate, and ethyl chloroacetate with tetra- and trichloromethane at 303.15 K. The values of ?SE, VE, ??, and ?G*E are highly dependent on the type of components involved and the composition curves are unsymmetrical. The results obtained for viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Tamura-Kurata, Hind-McLaughlin-Ubbelohde, Katti-Chaudhri, McAllister, Heric-Brewer and Auslaender. The experimental speeds of sound have been analyzed in terms of collision factor theory and free length theory of solutions.
Resumo:
Non-ideal behaviour of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] in ethylene glycol monomethyl ether; CH3OCH2CH2OH (EGMME), ethylene glycol dimethyl ether; CH3OCH2CH2OCH3 (EGDME) and diethylene glycol dimethyl ether; CH3(OCH2CH2)2OCH3 (DEGDME) have been investigated over the whole composition range at T = (298.15 to 318.15) K. To gain insight into the mixing behaviour, results of density measurements were used to estimate excess molar volumes, image, apparent molar volumes, Vphi,i, partial molar volumes, image, excess partial molar volumes, image, and their limiting values at infinite dilution, image, image, and image, respectively. Volumetric results have been analyzed in the light of Prigogine–Flory–Patterson (PFP) statistical mechanical theory. Measurements of refractive indices n were also performed for all the binary mixtures over whole composition range at T = 298.15 K. Deviations in refractive indices ?phin and the deviation of molar refraction ?xR have been calculated from experimental data. Refractive indices results have been correlated with volumetric results and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich–Kister polynomial equation to obtain the binary coefficients and the standard errors.
Resumo:
The experimental measurements of the speed of sound and density of aqueous solutions of imidazolium based ionic liquids (IL) in the concentration range of 0.05 mol · kg-1 to 0.5 mol · kg-1 at T = 298.15 K are reported. The data are used to obtain the isentropic compressibility (ßS) of solutions. The apparent molar volume (phiV) and compressibility (phiKS) of ILs are evaluated at different concentrations. The data of limiting partial molar volume and compressibility of IL and their concentration variation are examined to evaluate the effect due to IL–water and IL–IL interactions. The results have been discussed in terms of hydrophobic hydration, hydrophobic interactions, and water structural changes in aqueous medium.
Resumo:
Proper application of stable isotopes (e. g., delta N-15 and delta C-13) to food web analysis requires an understanding of all nondietary factors that contribute to isotopic variability. Lipid extraction is often used during stable isotope analysis (SIA), because synthesized lipids have a low delta C-13 and can mask the delta C-13 of a consumer's diet. Recent studies indicate that lipid extraction intended to adjust delta C-13 may also cause shifts in delta N-15, but the magnitude of and reasons for the shift are highly uncertain. We examined a large data set (n = 854) for effects of lipid extraction (using Bligh and dyer's [ 1959] chloroform-methanol solvent mixtures) on the delta N-15 of aquatic consumers. We found no effect of chemically extracting lipids on the delta N-15 of whole zooplankton, unionid mussels, and fish liver samples, and found a small increase in fish muscle delta N-15 of similar to 0.4%. We also detected a negative relationship between the shift in delta N-15 following extraction and the C:N ratio in muscle tissue, suggesting that effects of extraction were greater for tissue with lower lipid content. As long as appropriate techniques such as those from Bligh and dyer (1959) are used, effects of lipid extraction on delta N-15 of aquatic consumers need not be a major consideration in the SIA of food webs.