1000 resultados para 174-1073
Resumo:
Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.
Resumo:
Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technologies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genome-wide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their classification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X chromosome location, with CT-X genes being significantly more testis-restricted than non-X CT. Applying this core classification in a genome-wide survey we identified >30 CT candidate genes; 3 of them, PEPP-2, OTOA, and AKAP4, were confirmed as testis-restricted or testis-selective using RT-PCR, with variable expression frequencies observed in a panel of cancer cell lines. Our classification provides an objective ranking for potential CT genes, which is useful in guiding further identification and characterization of these potentially important diagnostic and therapeutic targets.
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
Treatment of chronic hepatitis C with pegylated interferon-a and ribavirin is now adapted individually based on the virological response on treatment. This approach should improve the tolerability while maintaining or even improving in some patients the efficacy of antiviral therapy. Several new antiviral drugs are currently being evaluated in advanced clinical trials, with very promising results. These new drugs should greatly broaden treatment options for chronic hepatitis C in the near future.
Resumo:
Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.
Resumo:
BACKGROUND: The dose intensity of chemotherapy can be increased to the highest possible level by early administration of multiple and sequential high-dose cycles supported by transfusion with peripheral blood progenitor cells (PBPCs). A randomized trial was performed to test the impact of such dose intensification on the long-term survival of patients with small cell lung cancer (SCLC). METHODS: Patients who had limited or extensive SCLC with no more than two metastatic sites were randomly assigned to high-dose (High, n = 69) or standard-dose (Std, n = 71) chemotherapy with ifosfamide, carboplatin, and etoposide (ICE). High-ICE cycles were supported by transfusion with PBPCs that were collected after two cycles of treatment with epidoxorubicin at 150 mg/m(2), paclitaxel at 175 mg/m(2), and filgrastim. The primary outcome was 3-year survival. Comparisons between response rates and toxic effects within subgroups (limited or extensive disease, liver metastases or no liver metastases, Eastern Cooperative Oncology Group performance status of 0 or 1, normal or abnormal lactate dehydrogenase levels) were also performed. RESULTS: Median relative dose intensity in the High-ICE arm was 293% (range = 174%-392%) of that in the Std-ICE arm. The 3-year survival rates were 18% (95% confidence interval [CI] = 10% to 29%) and 19% (95% CI = 11% to 30%) in the High-ICE and Std-ICE arms, respectively. No differences were observed between the High-ICE and Std-ICE arms in overall response (n = 54 [78%, 95% CI = 67% to 87%] and n = 48 [68%, 95% CI = 55% to 78%], respectively) or complete response (n = 27 [39%, 95% CI = 28% to 52%] and n = 24 [34%, 95% CI = 23% to 46%], respectively). Subgroup analyses showed no benefit for any outcome from High-ICE treatment. Hematologic toxicity was substantial in the Std-ICE arm (grade > or = 3 neutropenia, n = 49 [70%]; anemia, n = 17 [25%]; thrombopenia, n = 17 [25%]), and three patients (4%) died from toxicity. High-ICE treatment was predictably associated with severe myelosuppression, and five patients (8%) died from toxicity. CONCLUSIONS: The long-term outcome of SCLC was not improved by raising the dose intensity of ICE chemotherapy by threefold.
Resumo:
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D(2), +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Resumo:
The Framework Convention on Tobacco Control (FCTC) isa global and comprehensive legal framework for reducing demand for tobacco (e.g. price measures; ban on smoking in enclosed places; contents of tobacco products; packaging and labeling; advertising, promotion and sponsorship; liability, tobacco cessation, etc.) and supply (e.g. illicit trade; sales to/by minors, etc.). Adopted in 2003, the FCTC has been ratified by 174 countries so far. Switzerland has signed the treaty in 2004 but ratification will necessitate the implementation of stronger tobacco control measures at the national level. The FCTC is a priority of any strategy to reduce noncommunicable diseases in populations. Broad implementation of the FCTC has the potential to prevent a substantial proportion of the billion of tobacco-related deaths expected in the 21st
Resumo:
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
Resumo:
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.