929 resultados para 091200 MATERIALS ENGINEERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by high-density plasma chemical vapor deposition Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films. micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree (that is related with the structure and chemical composition) strongly depend on the substrate surface conditions The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical and experimental open-circuit voltage optimizations of a simple fabrication process of silicon solar cells n(+)p with rear passivation are presented. The theoretical results were obtained by using an in-house developed program, including the light trapping effect and metal-grid optimization. On the other hand, the experimental steps were monitored by the photoconductive decay technique. The starting materials presented thickness of about 300 pm and resistivities: FZ (0.5 Omega cm), Cz-type 1 (2.5 Omega cm) and Cz-type 2 (3.3 Omega cm). The Gaussian profile emitters were optimized with sheet resistance between 55 Omega/sq and 100 Omega/sq, and approximately 2.0 mu m thickness in accordance to the theoretical results. Excellent implied open-circuit voltages of 670.8 mV, 652.5 mV and 662.6 mV, for FZ, Cz-type 1 and Cz-type 2 silicon wafers, respectively, could be associated to the measured lifetimes that represents solar cell efficiency up to 20% if a low cost anti-reflection coating system, composed by random pyramids and SiO(2) layer, is considered even for typical Cz silicon. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trapezium is often a better approximation for the FinFET cross-section shape, rather than the design-intended rectangle. The frequent width variations along the vertical direction, caused by the etching process that is used for fin definition, may imply in inclined sidewalls and the inclination angles can vary in a significant range. These geometric variations may cause some important changes in the device electrical characteristics. This work analyzes the influence of the FinFET sidewall inclination angle on some relevant parameters for analog design, such as threshold voltage, output conductance, transconductance, intrinsic voltage gain (A V), gate capacitance and unit-gain frequency, through 3D numeric simulation. The intrinsic gain is affected by alterations in transconductance and output conductance. The results show that both parameters depend on the shape, but in different ways. Transconductance depends mainly on the sidewall inclination angle and the fixed average fin width, whereas the output conductance depends mainly on the average fin width and is weakly dependent on the sidewall inclination angle. The simulation results also show that higher voltage gains are obtained for smaller average fin widths with inclination angles that correspond to inverted trapeziums, i.e. for shapes where the channel width is larger at the top than at the transistor base because of the higher attained transconductance. When the channel top is thinner than the base, the transconductance degradation affects the intrinsic voltage gain. The total gate capacitances also present behavior dependent on the sidewall angle, with higher values for inverted trapezium shapes and, as a consequence, lower unit-gain frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth`s lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximate to 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single- gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 mu m SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the surface characteristics of epoxy resin coatings, a treatment by fluorine-containing plasma was used to develop a coating with low surface free energy and improved chemical resistance. Through the coating analysis it was possible to verify information about the CF(n) bond formation and the fluorination depth. The best plasma process parameters presented the best fluorination depth, 90 nm, and fluorine concentration was nearly 30%. The improvement in contact angle of water was 50% and of raw petroleum was 130%. Salt spray test proves that the coating fluorination decreases the chance of substrate corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ideal conditions for the operation of tandem cold mills are connected to a set of references generated by models and used by dynamic regulators. Aiming at the optimization of the friction and yield stress coefficients an adaptation algorithm is proposed in this paper. Experimental results obtained from an industrial cold rolling mill are presented. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementitious stabilization of aggregates and soils is an effective technique to increase the stiffness of base and subbase layers. Furthermore, cementitious bases can improve the fatigue behavior of asphalt surface layers and subgrade rutting over the short and long term. However, it can lead to additional distresses such as shrinkage and fatigue in the stabilized layers. Extensive research has tested these materials experimentally and characterized them; however, very little of this research attempts to correlate the mechanical properties of the stabilized layers with their performance. The Mechanistic Empirical Pavement Design Guide (MEPDG) provides a promising theoretical framework for the modeling of pavements containing cementitiously stabilized materials (CSMs). However, significant improvements are needed to bring the modeling of semirigid pavements in MEPDG to the same level as that of flexible and rigid pavements. Furthermore, the MEPDG does not model CSMs in a manner similar to those for hot-mix asphalt or portland cement concrete materials. As a result, performance gains from stabilized layers are difficult to assess using the MEPDG. The current characterization of CSMs was evaluated and issues with CSM modeling and characterization in the MEPDG were discussed. Addressing these issues will help designers quantify the benefits of stabilization for pavement service life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-LIGA is a versatile technique which allows the fabrication of metal parts with high aspect ratio (height / width) through the combination of a photolithographic processing of a polymer and the electroforming of a metal inside the cavities engraved in the polymer. This low-cost technique is used in a variety of areas including microfluidic, optics, instrumentation, plastic molding and telecommunications, among others. To approximate Colombia to this modern technologies for materials processing, the Materials Science and Technology Group has started an appropriation process of microfabrication techniques, specifically, this paper presents the results of UV-LIGA technique implementation for the fabrication of Nickel microparts, and examine the effects of mold geometry on the growing speed and integrity of the obtained deposits, important parameters in order to achieve the fabrication of complex micrometric parts that leads to devices with commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the characterization of carbide lime (CL) - a by-product of acetylene production, composed mainly of calcium hydroxide with minor parts of carbonate - and compares its features to those of ""dry"" hydrated lime (HL) commonly used as a building material. Chemical, thermogravimetric and X-ray diffraction analyses indicated that the limes are similar in chemical and mineralogical compositions. except for the presence of carbon in the waste. Morphological and elemental chemical analyses by SEM and EDS revealed that CL particles differ from HL ones in their morphology and by the presence of carbon formations, Physical characterization included density and BET surface area of the materials. as well as, their particle size distributions in deionized water at diverse time periods. CL underwent agglomeration after approximately 60 min in water, whereas HL progressively became finer with time as determined by laser diffraction. In addition, water retention and squeeze flow tests were used to assess the pastes` fresh properties. (c) 2009 Elsevier B.V. All rights reserved.