994 resultados para íons metálicos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lightweight concrete has been the subject of several studies towards the development of new building materials. Emphasis has been given on the particle size effect and nature of aggregates used as raw materials. The present study includes an analysis of the materials that make this kind of concrete, analyzes of mechanical properties such as compressive and tensile strength, in addition to assessments of the interface concrete aggregate/matrix interface, porosity and absorption profile of chloride ions in lightweight concrete based on expanded clay. The experiments were carried out by molding cylindrical samples 100 mm in diameter and 200 mm in height. The dosage experiments were performed without additives or with the addition of minerals: (T1) 1: 2.01: 1.10: 0.78 (T2) 1: 2.00: 1.32 : 0.62 - (T3) 1 :1.93 :1.54: 0.47 (cement : sand : expanded clay 0500 : expanded clay 1506).The water to cement ratio was set to 0.43. Expanded clay minerals with different average particle sizes were used, i.e., 9.5 mm/0500 and 19 mm/1506. The larger aggregate was coated by a glassy layer, yielding lower water absorption characteristics to the concrete. The results showed that the use of light expanded clay aggregates is a technically interesting solution to the production of lightweight concrete for construction applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of "Materials Chemistry" has been developing in recent years and there has been a great increase of interest in the synthesis and chemical and physical properties of new inorganic solids. New routes of synthesis and synthesis modified has been developed with the aim not only to optimize the processes in laboratory scale, but also on an industrial scale, and make them acceptable by current environmental legislation. The phenomenology of current solid state chemistry properties coupled with the high temperature superconductivity, ferromagnetism, porosity molecular and colors are evidence affected by the synthesis method, which in turn can influence the technological application of these materials. From this understanding, mixed oxides of nickel and zinc nanoparticulate were synthesized by microwave-assisted combustion route using three specific types of organic fuels employing the weight ratios 1:1/2 and 1:1 of cation metallic/fuel, in order to investigate the influence of such proportions to obtain the solids. The new fuels were chosen to replace, for example, urea or glycine that are the fuels most commonly preferred in this kind of synthesis. The powders without heat treatment were studied by Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD) and then calcined at 900°C. After heat treatment, the samples were characterized by analysis of X Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The modified synthesis route porposed was effective for obtaining powders. Both the alternative fuels chosen as the different weight ratios employed, influenced in the morphology and obtaining oxides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study it was used two metallic oxides, Ta2O5 and TiO2, in order to obtain metallic powders of Ta and Ti through aluminothermic reduction ignited by plasma. Ta2O5 and TiO2 powders were mixed with Al in a planetary mill, using different milling times. A thermal analysis study (DTA and TG) was carried out, in order to know the temperature to react both the mixtures. Then, these mixtures were submitted to a hollow cathode discharge, where they were reacted using aluminothermic reduction ignited by plasma. The product obtained was characterized by XRD and SEM, where it was proven the possibility of producing these metallic particles, different from the conventional process, where metallic ingots are obtained. It was verified that the aluminothermic reduction ignited by plasma is able to produce metallic powders of Ta and Ti, and a higher efficiency was observed to the process with Ta2O5-Al mixtures. Among different microstructural aspects observed, it can be noted the presence of metallic nanoparticles trapped into an Al2O3 matrix, besides acicular structures (titanium) and dendritic structures (tantalum), which are a product characteristic from a fast cooling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies are investigating a new class of inorganic materials which arise as a promising option for high performance applications in the field of photoluminescence. Highlight for rare earth (TR +3 ) doped, which have a high luminous efficiency, long decay time and being able to emit radiation in the visible range, specific to each element. In this study, we synthesized ZrO2: Tb +3 , Eu +3 , Tm +3 nanoparticles complex polymerization method (CPM). We investigated the influences caused by the heat treatment temperature and the content of dopants in zirconia photoluminescent behavior. The particles were calcined at temperature of 400, 500 and 600 ° C for two hours and ranged in concentration of dopants 1, 2, 4 and 8 mol% TR +3 . The samples were characterized by thermal analysis, X-ray diffraction, photoluminescence of measurements and uv-visible of spectroscopies. The results of X-ray diffraction confirmed the formation of the tetragonal and cubic phases in accordance with the content of dopants. The photoluminescence spectra show emission in the region corresponding simultaneous to blue (450 nm), green (550 nm) and red (615 nm). According to the results, ZrO2 particles co-doped with rare earth ions is a promising material white emission with a potential application in the field of photoluminescence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry