986 resultados para waste latex products
Resumo:
The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.
Resumo:
As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).
Resumo:
The European Project on Ocean Acidification (EPOCA) is Europe's first large-scale research initiative devoted to studying the impacts and consequences of ocean acidification. More than 100 scientists from 27 institutes and nine countries bring their expertise to the project, resulting in a multidisciplinary and versatile consortium. The project is funded for four years (2008 to 2012) by the European Commission within its Seventh Framework Programme. This article describes EPOCA and explains its different aspects, objectives, and products. Following a general introduction, six boxes highlight outcomes, techniques, and scientific results from each of the project's core themes.
Resumo:
Satellite ocean-colour sensors have life spans lasting typically five-to-ten years. Detection of long-term trends in chlorophyll-a concentration (Chl-a) using satellite ocean colour thus requires the combination of different ocean-colour missions with sufficient overlap to allow for cross-calibration. A further requirement is that the different sensors perform at a sufficient standard to capture seasonal and inter-annual fluctuations in ocean colour. For over eight years, the SeaWiFS, MODIS-Aqua and MERIS ocean-colour sensors operated in parallel. In this paper, we evaluate the temporal consistency in the monthly Chl-a time-series and in monthly inter-annual variations in Chl-a among these three sensors over the 2002–2010 time period. By subsampling the monthly Chl-a data from the three sensors consistently, we found that the Chl-a time-series and Chl-a anomalies among sensors were significantly correlated for >90% of the global ocean. These correlations were also relatively insensitive to the choice of three Chl-a algorithms and two atmospheric-correction algorithms. Furthermore, on the subsampled time-series, correlations between Chl-a and time, and correlations between Chl-a and physical variables (sea-surface temperature and sea-surface height) were not significantly different for >92% of the global ocean. The correlations in Chl-a and physical variables observed for all three sensors also reflect previous theories on coupling between physical processes and phytoplankton biomass. The results support the combining of Chl-a data from SeaWiFS, MODIS-Aqua and MERIS sensors, for use in long-term Chl-a trend analysis, and highlight the importance of accounting for differences in spatial sampling among sensors when combining ocean-colour observations.
Resumo:
Fuel-only algal systems are not economically feasible because yields are too low and costs too high for producing microalgal biomass compared to using agricultural residues e.g. straw. Biorefineries which integrate biomass conversion processes and equipment to produce fuels, power and chemicals from biomass, offer a solution. The CO2 microalgae biorefinery (D-Factory) is a 10 million Euro FP7-funded project which will cultivate the microalga Dunaliella in highly saline non-potable waters in photobioreactors and open raceways and apply biorefinery concepts and European innovations in biomass processing technologies to develop a basket of compounds from Dunaliella biomass, including the high value nutraceutical, β-carotene, and glycerol. Glycerol now finds markets both as a green chemical intermediate and as a biofuel in CHP applications as a result of novel combustion technology. Driving down costs by recovering the entire biomass of Dunaliella cells from saline cultivation water poses one of the many challenges for the D-Factory because Dunaliella cells are both motile, and do not possess an external cell wall, making them highly susceptible to cell rupture. Controlling expression of desired metabolic pathways to deliver the desired portfolio of compounds flexibly and sustainably to meet market demand is another. The first prototype D-Factory in Europe will be operational in 48 months, and will serve as a robust manifestation of the business case for global investment in algae biorefineries and in large-scale production of microalgae.
Resumo:
Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic.
Resumo:
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.
Resumo:
Models and software products have been developed for modelling, simulation and prediction of different correlations in materials science, including 1. the correlation between processing parameters and properties in titanium alloys and ?-titanium aluminides; 2. time–temperature–transformation (TTT) diagrams for titanium alloys; 3. corrosion resistance of titanium alloys; 4. surface hardness and microhardness profile of nitrocarburised layers; 5. fatigue stress life (S–N) diagrams for Ti–6Al–4V alloys. The programs are based on trained artificial neural networks. For each particular case appropriate combination of inputs and outputs is chosen. Very good performances of the models are achieved. Graphical user interfaces (GUI) are created for easy use of the models. In addition interactive text versions are developed. The models designed are combined and integrated in software package that is built up on a modular fashion. The software products are available in versions for different platforms including Windows 95/98/2000/NT, UNIX and Apple Macintosh. Description of the software products is given, to demonstrate that they are convenient and powerful tools for practical applications in solving various problems in materials science. Examples for optimisation of the alloy compositions, processing parameters and working conditions are illustrated. An option for use of the software in materials selection procedure is described.
Resumo:
Treatment of guanosine or 2'-deoxyguanosine with dimethyldioxirane, followed by heating in aqueous solution, generates respectively 4-amidinocarbamoyl-5-hydroxyimidazole (1) or its 2-(2,3,4-trihydroxybutyl) derivative (2).