995 resultados para vector diffractive theory
Resumo:
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Resumo:
A mathematical model that describes the behavior of low-resolution Fresnel lenses encoded in any low-resolution device (e.g., a spatial light modulator) is developed. The effects of low-resolution codification, such the appearance of new secondary lenses, are studied for a general case. General expressions for the phase of these lenses are developed, showing that each lens behaves as if it were encoded through all pixels of the low-resolution device. Simple expressions for the light distribution in the focal plane and its dependence on the encoded focal length are developed and commented on in detail. For a given codification device an optimum focal length is found for best lens performance. An optimization method for codification of a single lens with a short focal length is proposed.
Resumo:
A mathematical model describing the behavior of low-resolution Fresnel encoded lenses (LRFEL's) encoded in any low-resolution device (e.g., a spatial light modulator) has recently been developed. From this model, an LRFEL with a short focal length was optimized by our imposing the maximum intensity of light onto the optical axis. With this model, analytical expressions for the light-amplitude distribution, the diffraction efficiency, and the frequency response of the optimized LRFEL's are derived.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.
Resumo:
A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
We study the process of vacuum decay in quantum field theory focusing on the stochastic aspects of the interaction between long- and short-wavelength modes. This interaction results in a diffusive behavior of the reduced Wigner function describing the state of long-wavelength modes, and thereby to a finite activation rate even at zero temperature. This effect can make a substantial contribution to the total decay rate.
Resumo:
We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.
Resumo:
The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.