999 resultados para tomato plant
Resumo:
Transcriptase reverse - polymerase chain reaction (RT-PCR) and dot blot hybridization with digoxigenin-labeled probes were applied for the universal detection of Tospovirus species. The virus species tested were Tomato spotted wilt virus, Tomato chlorotic spot virus, Groundnut ringspot virus, Chrysanthemum stem necrosis virus, Impatiens necrotic spot virus, Zucchini lethal chlorosis virus, Iris yellow spot virus. Primers for PCR amplification were designed to match conserved regions of the tospovirus genome. RT-PCR using distinct primer combinations was unable to simultaneously amplify all tospovirus species and consistently failed to detect ZLCV and IYSV in total RNA extracts. However, all tospovirus species were detected by RT-PCR when viral RNA was used as template. RNA-specific PCR products were used as probes for dot hybridization. This assay with a M probe (directed to the G1/G2 gene) detected at low stringency conditions all Tospovirus species, except IYSV. At low stringency conditions, the L non-radioactive probe detected the seven Tospovirus species in a single assay. This method for broad spectrum detection can be potentially employed in quarantine services for indexing in vitro germplasm.
Resumo:
Resistance to nearly all pathogens occurs abundantly in our crops. Much of the resistance exploited by breeders is of the major gene type. Polygenic resistance, although used much less, is even more abundantly available. Many types of resistance are highly elusive, the pathogen apparently adapting very easily them. Other types of resistance, the so-called durable resistance, remain effective much longer. The elusive resistance is invariably of the monogenic type and usually of the hypersensitive type directed against specialised pathogens. Race-specificity is not the cause of elusive resistance but the consequence of it. Understanding acquired resistance may open interesting approaches to control pathogens. This is even truer for molecular techniques, which already represent an enourmously wide range of possibilities. Resistance obtained through transformation is often of the quantitative type and may be durable in most cases.
Resumo:
Experiments were carried out under laboratory, growth chamber, and field conditions to evaluate the effect of Plant growth-promoting and bioprotecting rhizobacteria (PGPBR) seed treatment on seed pathogens, seed germination, plant growth, and grain yield of wheat (Triticum aestivum). Most of the PGPBR strongly reduced the recovery of the pathogens from infected wheat seeds. All treatments, except the chemical iprodione + thiram, significantly promoted plant growth over the nontreated control. Psudomonas putida biotype A (11) and P. agglomerans (14) showed the greatest effects. Field experiments, carried out at two locations, indicated that all treatments, except P. chlororaphis (42), significantly increased seedling emergence of wheat . In Pato Branco, PR, P. putida biotype A (11) and P. putida biotype B (44) presented the best results, both being superior to fungal biological and chemical treatments. In Passo Fundo P. putida biotype A (11) and P. putida biotype B (17 and 44) significantly improved yield over the nontreated control. Yield increases of these three PGPBR were similar to the chemical treatment iprodione + thiram. In Pato Branco, P. putida biotype A (11) and P. putida biotype B (17), as well as the chemical treatment, provided significant increase over the nontreated control. Yield increases by the PGPBR varied from 18% to 22% in Passo Fundo and from 27% to 28% in Pato Branco.
Resumo:
Serological techniques are of great importance for plant virus identification and characterization. The major limiting factor for using these techniques for plant virus identification is the requirement of a good virus purified preparation to be used in immunizing animals for antiserum production. In the present study, two New Zealand rabbits were orally immunized with extracts from cowpea (Vigna unguiculata) plants systemically infected with Cowpea severe mosaic virus (CPSMV) and with extracts from papaya (Carica papaya) infected with Papaya lethal yellowing virus (PLYV). The leaf extracts were prepared in saline solution 0.15 M in the rate of 1:1 (w/v) and clarified by a centrifugation of 10,000 g for 10 min. The clarified extracts containing the viruses were orally administered to the New Zealand rabbits in two series of five daily doses of 1.0 ml each. The obtained policlonal antisera were shown to be very specific to their respective viruses in double immunodiffusion and indirect ELISA. These seem to be the first antisera specific for plant virus obtained by rabbit oral immunization. The results open up some possibilities for producing antisera to plant viruses of difficult purification. It is a simple, fast and inexpensive method for production of antisera for plant viruses when compared to the traditional techniques that involve rabbit injections with purified virus preparations.
Resumo:
Field experiments were conducted in the 1995-96 soybean (Glycine max) growing season to evaluate the effects of cultural practices and host genetic resistance on the intensity of soybean stem canker, caused by Diaporthe phaseolorum f.sp. meridionalis (Dpm). Experiments were conducted in a commercial field severely infected in the previous (1994-95) season. In one study, minimum tillage (MT) and no-tillage (NT) cropping systems were investigated for their effects on disease development and on plant yields in cvs. FT-Cristalina (susceptible) and FT-Seriema (moderately resistant). Another study evaluated the effects of plant densities (8, 15, 21 and 36 plants/m) on disease development in cvs. FT-Cristalina, FT-101 (moderately resistant) and FT-104 (resistant). Disease incidence and severity were consistently lower in NT than in MT, and plant yields were increased by 23% and 14% in the NT system for the susceptible and moderately resistant cultivars, respectively, compared to the yields in the MT system. The Gompertz and Logistic models described well the disease progress curves in all situations. For both susceptible and moderately resistant cultivars, disease severity increased proportionately to the increase in plant densities. At the end of the season, 100% of the plants of cv. FT-Cristalina were infected by Dpm, at all plant densities. Disease levels on cv. FT-101 were intermediate while only very low disease levels were recorded on cv. FT-104. There was a consistent negative correlation between stem canker severity and yield. Some practices demonstrated potential for direct application in disease control, and could be combined considering their additive effects.
Resumo:
The purpose of this study was to investigate the nature of co-operation between a project owner and an outside engineering consultant in combined heat and power plant implementation projects. Moreover, as another focal subject of the study was to familiarize the purchasing behavior of the energy producer and how an outside engineering consultant participated into different stages of the purchasing process. The study was carried out as a multiple case study including altogether six Finnish power plant implementation projects that had been taken into commercial use during 1995 – 2015. By adjusting the findings of empirical interview data and comparing those to the theoretical framework concerning, among others, Finnish energy production, engineering consulting businesses, delivery methods of construction project and finally the purchasing process, it can be concluded that especially in the power plant implementation projects in the past have a great influence to decisions made during the project. The role of the main engineering consultant is to act as an assistant, who helps to achieve the project goals successfully rather than an advisor who only knows how the project should be conducted. At least in these five project cases this was the case, meaning that the final decision power always remaining with project owner.
Resumo:
The cubiu (Solanum sessiliflorum) fruit, originating in the Amazon basin, is commonly used in that region for food, medicine, and cosmetics. In an experimental culture of cubiu, in order to evaluate its adaptation to conditions in the Northern region of the state of Rio de Janeiro, it was observed plants with mosaic symptoms. A cubiu plant was collected and analyzed to identify the etiological agent. After mechanical passage through a local lesion host, a host range test was performed. The virus induced chlorotic local lesions in Chenopodium quinoa, necrotic local lesions in Gomphrena globosa, mosaic in S. sessiliflorum, leaf and stem necrosis in tomato (Lycopersicon esculentum) 'Rutgers', mosaic and leaf distortion in Datura stramonium and Physalis floridana, and necrotic local lesions followed by systemic necrosis and plant death in four Nicotiana species. Electron microscopic observations of ultra thin sections from infected cubiu leaves showed the presence of spheroidal, membrane-bound particles typical of tospovirus species. Analysis of the nucleocapsid protein from concentrated virus particles indicated the presence of a 28 kDa protein. RT-PCR was performed after total RNA extraction from infected IPA-6 tomato leaves. A fragment of approximately 0,8 kbp corresponding to the N gene was amplified, cloned and sequenced. The N protein from the cubiu isolate was 95% homologous to the Groundnut ringspot virus (GRSV) protein, and no more than 85% homologous to those from Zucchini lethal chlorosis virus (ZLCV) and Chrysanthemun stem necrosis virus (CSNV), Tomato spotted wilt virus (TSWV), and Tomato chlorotic spot virus (TCSV). This is the first report of the occurrence of GRSV (or any other plant virus) in cubiu.
Resumo:
Os tospovírus são responsáveis por perdas significativas em diversas culturas, principalmente solanáceas. No município de São José dos Campos (SP), plantas de jiló (Solanum gilo) apresentando sintomas de mosaico, bolhosidades, nanismo e queda acentuada da produção foram coletadas para análise. Visando a caracterização do agente causador dos sintomas, testes biológicos, elétrono microscópicos, sorológicos e moleculares foram realizados. Através de inoculação mecânica em plantas indicadoras das famílias Amaranthaceae, Chenopodiaceae e Solanaceae obtiveram-se resultados típicos aos esperados para tospovírus. Ao microscópio eletrônico de transmissão, observaram-se, em contrastação negativa, partículas pleomórficas com diâmetro entre 80 e 110 nm e em cortes ultra-finos partículas presentes em vesículas do retículo endoplasmático. Através de DAS-ELISA, identificou-se o Tomato chlorotic spot virus (TCSV). A partir de RNA total extraído de folhas infetadas, amplificaram-se, via RT-PCR, fragmentos correspondentes ao gene da proteína do capsídeo (cp) os quais foram seqüenciados e comparados com outros depositados no "GenBank". A homologia de nucleotídeos e aminoácidos deduzidos foi respectivamente de 99 e 95% quando comparada com seqüências de isolados de TCSV. A comparação com as outras espécies do gênero Tospovirus apresentou valores de homologia entre 72 e 84%. Estes resultados confirmam a identidade deste vírus como pertencente à espécie TCSV, que é predominante no Estado de São Paulo e importante patógeno de outras plantas cultivadas. Além disso, variedades de jiló quando inoculadas foram susceptíveis tanto ao TCSV como às espécies Tomato spotted wilt virus (TSWV) e Groundnut ringspot virus (GRSV).
Resumo:
The genetic diversity of begomovirus isolates from tomato (Lycopersicon esculentum) fields in the Southeastern region of Brazil was analyzed by direct sequencing of PCR fragments amplified by using universal oligonucleotides for the begomovirus DNA-A, and subsequent computer-aided phylogenetic analysis. Samples of tomato plants and associated weeds showing typical symptoms of virus infection were collected at seven locations in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. A total of 137 out of 369 samples were infected with a begomovirus based on PCR analysis. Phylogenetic analysis indicated a high degree of genetic diversity among begomoviruses infecting tomatoes in the sampled area. One species (Tomato chlorotic mottle virus, TCMV) occurs predominantly in Minas Gerais, whereas in Rio de Janeiro and Espírito Santo a distinct species, not yet fully characterized, predominates. Phylogenetic analysis further indicates the presence of an additional four possible new species. This high degree of genetic diversity suggests a recent transfer of indigenous begomovirus from wild hosts into tomatoes. The close phylogenetic relationship verified between begomovirus infecting tomato and associated weeds favors this hypothesis.
Resumo:
Um vírus isolado em Guaratinguetá, SP, de tomateiro (Lycoporsicon esculentum) 'Santa Clara' com sintomas característicos de virose, foi estudado por meio de plantas indicadoras e de hospedeiras diferenciais pertencentes a linhagens homozigotas de tomateiro, ensaios de estabilidade in vitro, purificação, contrastação negativa, testes sorológicos de ELISA-PTA e imunomicroscopia eletrônica, utilizando-se anti-soros contra diferentes vírus do gênero Tobamovirus. O isolado infetou plantas de espécies de amarantáceas, quenopodiáceas e solanáceas. Plantas de Chenopodium amaranticolor reagiram com sintomas locais e sistêmicos; Nicotiana sylvestris e N. rustica reagiram com lesões locais e a linhagem homozigota de tomateiro Tm-2 mostrou-se imune ao vírus. Nas preparações purificadas de contrastação negativa, foram observadas partículas rígidas e alongadas com cerca de 300 nm. O isolado foi identificado como um tobamovírus, com anti-soros contra o Tomato mosaic virus (ToMV) e Tobacco mosaic virus (TMV). As hospedeiras diferenciais indicaram se tratar de ToMV. Por meio de RT-PCR, com oligonucleotídeos para o gene da capa protéica de espécies do gênero Tobamovirus do subgrupo 1, amplificaram-se fragmentos com 850 pb que foram clonados e seqüenciados. A similaridade de nucleotídeos e aminoácidos deduzidos variou entre 85 e 91% quando a seqüência do ToMV-SP foi comparada com outras sequências de ToMV, 75 e 83% quando comparada com as do TMV e 67 e 72% quando comparada com a do Odontoglossum ringspot virus (ORSV). As comparações com outras espécies de tobamovírus apresentaram valores de similaridade inferiores a 65%. Confirmou-se a identidade dos vírus como sendo uma nova estirpe do ToMV.
Resumo:
The addition of organic residues to soil is an option to control some soil-borne diseases. Benzaldehyde and powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine-bark (Pinus elliottii and P. taeda) added to soil could reduce certain soil-borne diseases. This study evaluated the effects of benzaldehyde and the dried powders of kudzu, velvetbean, and pine-bark as soil amendments on germination and formation of sclerotia, on mycelial growth of Sclerotium rolfsii, on plant survival, and disease incidence. The data showed that high amounts of benzaldehyde (0.4 ml kg-1 of soil) and velvetbean (100 g kg-1) inhibited S. rolfsii mycelial growth and sclerotium germination. However, low amounts of benzaldehyde (0.1 ml kg-1), kudzu (25 g kg-1), and pine-bark (25 g kg-1) stimulated mycelial growth and sclerotium germination. Kudzu (25-100 g kg-1) and velvetbean (25-100 g kg-1) inhibited the formation of sclerotia. Nevertheless, benzaldehyde at 0.2 and 0.4 ml kg-1 stimulated the formation of sclerotia. Kudzu (50 and 100 g kg-1) and pine-bark (50 g kg-1) favored the colonization of sclerotia by Trichoderma sp. The numbers of soybean (Glycine max) plants were higher and diseased plants were lower than the non-amend soil in the following treatments: kudzu (50 and 100 g kg-1), velvetbean (50 and 100 g kg-1), and pine-bark (50 g kg-1). Disease severity on tomato (Lycopersicon esculentum) plants was low in soil treated with kudzu or velvetbean (30 and 35 g kg-1) and pine-bark (35 g kg-1). Dried powders of kudzu, velvetbean, or pine-bark added to soil can reduce disease by reducing pathogen inoculum.
Resumo:
In the regions of Campinas and Sumaré, São Paulo, Brazil, hidroponically grown crops of Lettuce (Lactuca sativa) cv. Verônica, which showed virus-like symptoms were examined by electron microscope, biological, serological and molecular tests. Pleomorphic, enveloped particles (80-100 nm in diameter) were always detected in these samples. Experimentally inoculated host plants, including lettuce, reacted with tospoviruses-induced symptoms. Some differences were observed in Gomphrena globosa, which reacted by showing local lesions and systemic mosaic. Two isolates of Tomato chlorotic spot virus (TCSV) were identified by DAS-ELISA and by RT-PCR. The sequencing and alignment of the RT-PCR coat protein amplified fragments have indicated a high degree of homology with the TCSV sequences stored in the GenBank. This is the first report of losses due to a virus from the genus Tospovirus in commercial hydroponic lettuce crops in Brazil. Further epidemiological studies are needed for better understanding the spread of the virus in hydroponic crops, since Tomato spotted wilt virus (TSWV) is reported to spread through the nutritive solution.
Resumo:
Determination of virus diversity in the field is vital to support a sustainable breeding program for virus resistance of horticultural crops. The present study aimed to characterize four field potyvirus isolates found naturally infecting sweet pepper (Capsicum annuum) (Sa66 and Sa115) and tomato (Lycopersicon esculentum) (IAC3 and Sa21) plants. Their biological characteristics revealed differences among the isolates in their ability to infect distinct Capsicum spp. and tomato genotypes, and in the severity of symptoms caused by these isolates compared to the infection caused by an isolate of Pepper yellow mosaic virus (PepYMV). Absence of cross-reaction was found among the studied isolates with antiserum against Potato virus Y (PVY). However, all isolates reacted, at different intensities, with antiserum against PepYMV. All isolates showed high identity percentage (97 to 99%) of the amino acid sequence of the coat protein with PepYMV (accession AF348610) and low (69 to 80%) with other potyvirus species. The comparison of the 3' untranslated region also confirmed this finding with 97 to 98% identity with PepYMV, and of 47 to 71% with other potyviruses. The results showed that PepYMV isolates were easily differentiated from PVY by serology and that the host response of each isolate could be variable. In addition, the nucleotide sequence of the coat protein and 3' untranslated region was highly conserved among the isolates.