962 resultados para time-dependent fluid flow
Resumo:
An asymptotic solution is obtained corresponding to a very intense pulse: a sudden strong increase and fast subsequent decrease of the water level at the boundary of semi-infinite fissurized-porous stratum. This flow is of practical interest: it gives a model of a groundwater flow after a high water period or after a failure of a dam around a collector of liquid waste. It is demonstrated that the fissures have a dramatic influence on the groundwater flow, increasing the penetration depth and speed of fluid penetration into the stratum. A characteristic property of the flow in fissurized-porous stratum is the rapid breakthrough of the fluid at the first stage deeply into the stratum via a system of cracks, feeding of porous blocks by the fluid in cracks, and at a later stage feeding of advancing fluid flow in fissures by the fluid, accumulated in porous blocks.
Resumo:
Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.
Resumo:
This paper describes the design of a parallel algorithm that uses moving fluids in a three-dimensional microfluidic system to solve a nondeterministically polynomial complete problem (the maximal clique problem) in polynomial time. This algorithm relies on (i) parallel fabrication of the microfluidic system, (ii) parallel searching of all potential solutions by using fluid flow, and (iii) parallel optical readout of all solutions. This algorithm was implemented to solve the maximal clique problem for a simple graph with six vertices. The successful implementation of this algorithm to compute solutions for small-size graphs with fluids in microchannels is not useful, per se, but does suggest broader application for microfluidics in computation and control.
Resumo:
Protein extracted from root and leaf tissue of the dicotyledonous plants pea (Pisum sativum) and broad bean (Vicia faba) and the monocotyledonous plants wheat (Triticum aestivum) and barley (Hordeum vulgare) were shown to catalyze the incorporation of biotin-labeled cadaverine into microtiter-plate-bound N′,N′-dimethylcasein and the cross-linking of biotin-labeled casein to microtiter-plate-bound casein in a Ca2+-dependent manner. The cross-linking of biotinylated casein and the incorporation of biotin-labeled cadaverine into N′,N′-dimethylcasein were time-dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2-week growth period in both the roots and leaves of pea. The product of transglutaminase's protein-cross-linking activity, ε-(γ-glutamyl)-lysine isodipeptide, was detected in root and shoot protein from pea, broad bean, wheat, and barley by cation-exchange chromatography. The presence of the isodipeptide was confirmed by reversed-phase chromatography. Hydrolysis of the isodipeptide after cation-exchange chromatography confirmed the presence of glutamate and lysine.
Resumo:
To provide a more general method for comparing survival experience, we propose a model that independently scales both hazard and time dimensions. To test the curve shape similarity of two time-dependent hazards, h1(t) and h2(t), we apply the proposed hazard relationship, h12(tKt)/ h1(t) = Kh, to h1. This relationship doubly scales h1 by the constant hazard and time scale factors, Kh and Kt, producing a transformed hazard, h12, with the same underlying curve shape as h1. We optimize the match of h12 to h2 by adjusting Kh and Kt. The corresponding survival relationship S12(tKt) = [S1(t)]KtKh transforms S1 into a new curve S12 of the same underlying shape that can be matched to the original S2. We apply this model to the curves for regional and local breast cancer contained in the National Cancer Institute's End Results Registry (1950-1973). Scaling the original regional curves, h1 and S1 with Kt = 1.769 and Kh = 0.263 produces transformed curves h12 and S12 that display congruence with the respective local curves, h2 and S2. This similarity of curve shapes suggests the application of the more complete curve shapes for regional disease as templates to predict the long-term survival pattern for local disease. By extension, this similarity raises the possibility of scaling early data for clinical trial curves according to templates of registry or previous trial curves, projecting long-term outcomes and reducing costs. The proposed model includes as special cases the widely used proportional hazards (Kt = 1) and accelerated life (KtKh = 1) models.
Resumo:
Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone.
Resumo:
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease. This requires cardiomyocytes to be mechanically durable and able to mount coordinated responses to a variety of environmental signals on different time scales, including cardiac pressure loading and electrical and hemodynamic forces. During physiological growth, myocytes, endocardial and epicardial cells have to adaptively remodel to these mechanical forces. Here we review some of the recent advances in the understanding of how mechanical forces influence cardiac development, with a focus on fluid flow forces. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Develomental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.
Resumo:
Delta18O values of pore waters from the northern Barbados accretionary prism range from -0.3 to -3.6? and reflect pervasive reaction of volcanic ash to form smectite within the sedimentary sequence and continued low temperature alteration of basalt in the underlying ocean crust with the overprint of diffusive exchange between water in the sediment pores and the open ocean. Delta D values of pore waters in sediments sampled seaward of the deformation front drop from +5? at the sediment surface to -6? at the deepest levels sampled. These changes may also be related to alteration processes but remain largely enigmatic. Sediment deformation caused by impingement of the Caribbean plate on the Atlantic plate has instigated migration of chemically and isotopically distinct fluid along faults and coarse-grained sedimentary beds; delta18O values of pore waters are also locally affected by thrust stacking which increases diffusive pathlengths and possibly modifies diagenetic reaction rates in Pleistocene sediments. Migrating fluids are distinguished by anomalous delta18O values that are as much as 1? higher than those of surrounding fluids. Uncertainties in hydrogen isotope fractionation resulting from processes occurring under these conditions hinder identification of the hydrogen isotope composition of expelled fluid. Stable isotope analyses of pore waters help constrain the fluid migration history of the accretionary prism by limiting the source of fluids, the paths along which fluid flows, and the timing of faulting and subsequent fluid flow.
Resumo:
Permeability of the ocean crust is one of the most crucial parameters for constraining submarine fluid flow systems. Active hydrothermal fields are dynamic areas where fluid flow strongly affects the geochemistry and biology of the surrounding environment. There have been few permeability measurements in these regions, especially in felsic-hosted hydrothermal systems. We present a data set of 38 permeability and porosity measurements from the PACMANUS hydrothermal field, an actively venting, felsic hydrothermal field in the eastern Manus Basin. Permeability was measured using a complex transient method on 2.54-cm minicores. Permeability varies greatly between the samples, spanning over five orders of magnitude. Permeability decreases with both depth and decreasing porosity. When the alteration intensity of individual samples is considered, relationships between depth and porosity and permeability become more clearly defined. For incompletely altered samples (defined as >5% fresh rock), permeability and porosity are constant with depth. For completely altered samples (defined as <5% fresh rock), permeability and porosity decrease with depth. On average, the permeability values from the PACMANUS hydrothermal field are greater than those in other submarine environments using similar core-scale laboratory measurements; the average permeability, 4.5 x 10-16 m**2, is two to four orders of magnitude greater than in other areas. Although the core-scale permeability is higher than in other seafloor environments, it is still too low to obtain the fluid velocities observed in the PACMANUS hydrothermal field based on simplified analytical calculations. It is likely that core-scale permeability measurements are not representative of bulk rock permeability of the hydrothermal system overall, and that the latter is predominantly fracture controlled.
Resumo:
Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.
Resumo:
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45' N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]_SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]_HydEnd) and thereby adopts a d44/40Ca_HydEnd of -0.95+/-0.07 per mil relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that d44/40Ca_HydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a d44/40Ca of -1.17+/-0.04 per mil (SW) for the host-rocks in the reaction zone and -1.45+/-0.05 per mil (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed d44/40Ca for Bulk Earth of -0.92+/-0.18 per mil (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about D44/40Ca = -0.5 per mil relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average d44/40Ca of -1.54+/-0.08 per mil (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.
Resumo:
The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr**-1 to <1 cm yr**-1 and the sulfate/methane transition (SMT) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6-9.3 mol m**-2 yr**-1). Depth-integrated rates of bioirrigation increased from 120 cm yr**-1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr**-1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical environment and fuel upward sulfide flux via AOM. Furthermore, due to the introduction of oxygenated bottom water into the sediment via bioirrigation, the depth of the sulfide sink gradually deepens towards outer habitats. We therefore suggest that - in addition to the oxygen levels in the water column, which determine whether macrofaunal communities can develop or not - it is the depth of the SMT and thus of sulfide production that determines which chemosynthetic communities are able to exploit the sulfide at depth. We hypothesize that large vesicomyid clams, by efficiently expanding the sulfate zone down into the sediment, could cut off smaller or less mobile organisms, as e.g. small clams and sulfur bacteria, from the sulfide source.
Resumo:
Two sealed borehole hydrologic observatories (CORKs) were installed in two active hydrogeochemical systems at the Costa Rica subduction zone to investigate the relationship between tectonics, fluid flow, and fluid composition. The observatories were deployed during Ocean Drilling Program (ODP) Leg 205 at Site 1253, ~ 0.2 km seaward of the trench, in the upper igneous basement, and at Site 1255, ~ 0.5 km landward of the trench, in the décollement. Downhole instrumentation was designed to monitor formation fluid flow rates, composition, pressure, and temperature. The two-year records collected by this interdisciplinary effort constitute the first co-registered hydrological, chemical, and physical dataset from a subduction zone, providing critical information on the average and transient state of the subduction thrust and upper igneous basement. The continuous records at ODP Site 1253 show that the uppermost igneous basement is highly permeable hosting an average fluid flow rate of 0.3 m/yr, and indicate that the fluid sampled in the basement is a mixture between seawater (~ 50%) and a subduction zone fluid originating within the forearc (~ 50%). These results suggest that the uppermost basement serves as an efficient pathway for fluid expelled from the forearc that should be considered in models of subduction zone hydrogeology and deformation. Three transients in fluid flow rates were observed along the décollement at ODP Site 1255, two of which coincided with stepwise increases in formation pressure. These two transients are the result of aseismic slip dislocations that propagated up-dip from the seismogenic zone over the course of ~ 2 weeks terminating before reaching ODP Site 1255 and the trench. The nature and temporal behavior of strain and the associated hydrological response during these slow slip events may be an analog for the response of the seaward part of the subduction prism during or soon after large subduction zone earthquakes.