944 resultados para suppression subtractive hybridization (SSH)
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
Purpose: (1) To devise a model-based method for estimating the probabilities of binocular fusion, interocular suppression and diplopia from psychophysical judgements, (2) To map out the way fusion, suppression and diplopia vary with binocular disparity and blur of single edges shown to each eye, (3) To compare the binocular interactions found for edges of the same vs opposite contrast polarity. Methods: Test images were single, horizontal, Gaussian-blurred edges, with blur B = 1-32 min arc, and vertical disparity 0-8.B, shown for 200 ms. In the main experiment, observers reported whether they saw one central edge, one offset edge, or two edges. We argue that the relation between these three response categories and the three perceptual states (fusion, suppression, diplopia) is indirect and likely to be distorted by positional noise and criterion effects, and so we developed a descriptive, probabilistic model to estimate both the perceptual states and the noise/criterion parameters from the data. Results: (1) Using simulated data, we validated the model-based method by showing that it recovered fairly accurately the disparity ranges for fusion and suppression, (2) The disparity range for fusion (Panum's limit) increased greatly with blur, in line with previous studies. The disparity range for suppression was similar to the fusion limit at large blurs, but two or three times the fusion limit at small blurs. This meant that diplopia was much more prevalent at larger blurs, (3) Diplopia was much more frequent when the two edges had opposite contrast polarity. A formal comparison of models indicated that fusion occurs for same, but not opposite, polarities. Probability of suppression was greater for unequal contrasts, and it was always the lower-contrast edge that was suppressed. Conclusions: Our model-based data analysis offers a useful tool for probing binocular fusion and suppression psychophysically. The disparity range for fusion increased with edge blur but fell short of complete scale-invariance. The disparity range for suppression also increased with blur but was not close to scale-invariance. Single vision occurs through fusion, but also beyond the fusion range, through suppression. Thus suppression can serve as a mechanism for extending single vision to larger disparities, but mainly for sharper edges where the fusion range is small (5-10 min arc). For large blurs the fusion range is so much larger that no such extension may be needed. © 2014 The College of Optometrists.
Resumo:
Four-wave-mixing (FWM) due to the fiber nonlinearity is a major limiting factor in coherent optical OFDM transmission. We propose to apply power pre-emphasis, i.e. to allocate the transmitted power nonuniformly among subcarriers in order to suppress the FWM impairment. The proposed technique was numerically investigated for both single channel 15.6 Gbs CO-OFDM transmissions and 7-channel WDM transmissions, showing that up to 1 dB improvement in the system's Qfactor can be achieved without considering sophisticated power loading algorithms developed for wireless communications. © 2014 Optical Society of America.
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
Object. Craniopharyngioma is the most common childhood brain tumor and is thought to arise from embryonic remnants of the Rathke pouch. Some craniopharyngiomas are monoclonal in origin and hence presumably harbor somatic genetic alterations, although the precise molecular mechanisms involved in craniopharyngioma development are unknown. The goal of this study was to identify genetic alterations in craniopharyngiomas. Methods. To gain insight into the molecular mechanisms involved in development of these tumors, the authors analyzed nine adamantinomatous craniopharyngiomas by using comparative genomic hybridization. Six tumors (67%) displayed at least one genomic alteration, and three had six or more alterations. Only two tumors displayed a decrease in DNA copy number, and in all others an increase in DNA copy number was noted. Conclusions. The authors conclude that a subset of craniopharyngiomas consists of monoclonal tumors arising from activation of oncogenes located at specific chromosomal loci.
Resumo:
A simple efficient method for stabilizing a harmonically mode-locked fiber ring laser is proposed. In this method, a linear optical filter and a nonlinear Fabry–Pérot filter in which the refractive index is optical intensity dependent are located in the laser cavity. The linear filter is used to select a fixed lasing wavelength, and the Fabry–Pérot filter introduces a negative all-optical feedback mechanism that is able to suppress pulse-to-pulse amplitude fluctuations in the laser cavity. The scheme was experimentally demonstrated using a fiber Bragg grating as the linear filter and a laser diode biased below threshold as the nonlinear Fabry–Pérot, and stable harmonically mode-locked pulses with a supermode noise suppression ratio >55 dB were obtained.
Resumo:
A simple and efficient method to stabilise harmonically mode-locked fibre ring laser is proposed. In this method, a linear optical filter and a nonlinear Fabry-Perot filter are introduced into the laser cavity. Stable harmonically mode-locked pulses with supermode noise suppression ratio more than 55dB was demonstrated.
Resumo:
We present a technique for suppressing cladding-mode coupling loss in fiber Bragg grating fabrication. Suppression of cladding-modes down to 0.2 dB in a Bragg grating of 18dB reflectivity has been achieved in hydrogen-loaded standard single-mode fiber.
Resumo:
We have revisited soliton transmission in the new context of coherent optical detection optimizing and comparing digital backward propagation and in-line optical filtering as a means to suppress soliton timing and phase jitter. We find that in-line optical filtering allows one to improve the reach of the soliton system by up to the factor of 2. Our results show that nonlinear propagation can lead to performance beyond the nonlinear Shannon limit.
Resumo:
A temperature sensor based on a multimode-singlemode-multimode (MSM) fiber structure has been proposed and experimentally demonstrated. By utilizing the interference between fiber core and cladding modes, temperature measurement is exploited by monitoring the selected resonant dips shift of the transmission spectrum. A high temperature sensitivity of 50.65 pm/ºC is achieved at a certain resonant dip, accompanied by a suppressed strain sensitivity of only 0.587 pm/με. The sensor reveals the advantages of easy fabrication and interrogation, low cost and small axial strain response. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.
Resumo:
We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.
Resumo:
Nonlinear distortion in few-mode fibers for intermediate coupling is studied for the first time. Coupling strengths beyond -20 dB/100m give suppression of nonlinear distortion below the isolated mode without mode coupling.
Resumo:
We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5dB is possible under realistic conditions, at the expense of small redundancy 10%). © 2006 IEEE.