903 resultados para soybean grain
Resumo:
High purity SnO 2 powder (>99.9%) was compacted in cylindrical pellets and sintered in atmospheres of dry argon, argon with water vapor, oxygen and CO 2 using 10 °C/min up to 1200 °C or isotherms in the range of 1000 to 1200 °C. Time, temperature and sintering atmosphere have large influence on grain growth and low influence on densification of this oxide. Surface diffusion is the dominant mechanism up to 1200 °C and evaporation-condensation is dominant above 1200 °C. The maximum linear shrinkage observed was about 2.0% and attributed to structural rearrangement of particles due to high capillary stresses developed with neighboring particles. © 1999 Trans Tech Publications.
Resumo:
Ferulic acid uptake by soybean root in nutrient culture was investigated by the depletion method at different concentrations, temperatures and pH. Results showed that soybean roots absorbed this compound at greater rates in the concentrations between 0.05-mM and 1.0-mM and it was concentration dependent. Ferulic acid uptake was unaffected at pH 4.5 or 6.0 but reduced at pH 7.0. At pH 6.0, uptake rates decreased significantly with increasing temperature of nutrient solution.
Resumo:
Sodium (Na+) and chloride (Cl-) nutritional requirements, dietary electrolyte balance (DEB), and their effects on acid-base balance, litter moisture, and tibial dyschondroplasia (TD) incidence for young broiler chickens were evaluated in two trials. One-day-old Cobb broilers were distributed in a completely randomized design with six treatments, five replicates, and 50 birds per experimental unit. Treatments used in both experiments were a basal diet with 0.10% Na+ (Experiment 1) or Cl- (Experiment 2) supplemented to result in diets with Na+ or Cl- levels of 0.10, 0.15, 0.20, 0.25 ,0.30, or 0.35%, respectively. In Experiment 1, results indicated an optimum Na+ requirement of 0.26%. Sodium levels caused a linear increase in arterial blood gas parameters, indicating an alkalogenic effect of Na+. The hypertrophic area of growth plate in the proximal tibiotarsi decreased with Na+ levels. The TD incidence decreased with increases in dietary Na+. Litter moisture increased linearly with sodium levels. In Experiment 2, the Cl- requirement was estimated as 0.25%. Chloride levels caused a quadratic effect (P ≤ 0.01) on blood gas parameters, with an estimated equilibrium [blood base excess (BE) = 0] at 0.30% of dietary CT-. No Cl- treatment effects (P ≥ 0.05) were observed on litter moisture or TD incidence. The best DEB for maximum performance was 298 to 315 mEq/kg in Experiment 1 and 246 to 264 mEq/kg in Experiment 2. We concluded that the Na+ and Cl- requirements for optimum performance of young broiler chickens were 0.28 and 0.25%, respectively.