945 resultados para sol-gets (xerogels)
Resumo:
The aim of this study is to analyze the effect of neuromuscular electrical stimulation (NMES) on myoelectrical activity and on joint torque during isometric plantar flexion contraction. Ten healthy young adult subjects participate in this study. The electrodes for NMES are placed along posterior thigh along ciatic nerve trajectory. It is measured the myoelectrical activity and the isometric torque generated by ankle plantar flexion with an isokinetic dynamometer. The conditions of isometric contractions are maximum isometric voluntary contraction (MIVC), NMES, and association of both (MIVC+NMES). The results show lower torque during NMES and larger SOL activity compare to the others. Besides, in order to keep the same objective task (to produce the same level of torque), neuromuscular adaptations are necessary on the common drive.
Resumo:
The technique based on sol-gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane-polyvinyl alcohol (POS-PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS-PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS-PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS-PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis-Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS-PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis-Menten constant value (K-m) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the preparation and characterization of biogenic modified silica from rice hull ash and its use as a sorbent of cadmium ions. Thus, an agro-industrial residue has been used to produce a new adsorbent product which is able to remove toxic elements. Mesoporous biogenic silica was obtained by alkaline extraction of sodium silicate by hydrolysis with the sol-gel process, and it was modified with salen using 1,2-dichloroethane as a spacer. The surface area of the silica was measured by nitrogen adsorption/desorption analysis. Surface modification was measured by Fourier transform infrared spectroscopy. The degree of functionalization was obtained by elemental analysis. This work showed that biogenic modified silica can be produced in aqueous media from rice hull ash using a simple method, providing an alternative method for adsorbent preparation. Thermogravimetric analysis showed that the salen-modified silica is stable up to 209 C. The modified silica displays appropriate structural characteristics for an adsorbent. The cylindrical pores, open at both ends, allow free diffusion of cadmium ions to the adsorption sites on the silica surface. The surface modification increases cadmium adsorption on the silica surface 100-fold. The salen-modified silica showed specific adsorption for Cd2+ of 44.52 mg/g SiO2 at cadmium concentration of 100 mg/l.
Resumo:
In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Soluble (EPS-SOL), as well as insoluble extracellular polysaccharide (EPS-INSOL), extracted from biofilm of Streptococcus mutans, were analyzed by nuclear magnetic resonance spectroscopy, methylation analysis, and a controlled Smith degradation. EPS-SOL was a branched alpha-glucan containing a (1 -> 6)-and (1 -> 3)-linkages. EPS-INSOL was a branched alpha-glucan with similar linkages, but with a (1 -> 3)-linked main-chain partially substituted at O-6 with Glcp-(1 -> 6)-Glcp-side chains. Biofilm EPS had a distinct chemical structure compared with those synthesized by plankton cells or by purified enzymes from S. mutans, which could indicate different mechanisms for its degradation. (C) 2011 Published by Elsevier Ltd.
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Inorganic metal oxide materials are generally poor proton conductors as conductivities are lower than 10-5-10-6 S.cm-1. However, by functionalising Silica, Zirconia or Titania, proton conduction increases by up to 5 orders of magnitude. Hence, functionalised nanomaterials are becoming very competitive against conventional electrolyte materials such as Nafion. In this work, sol-gel processes are employed to produce silica phosphate, zirconia phosphate and titania phosphate functionalised nanoparticles. Furthermore, conductivities at hydrate conditions are investigated, and nanoparticle formation and functionalisation effects on proton conductivity are discussed. Results show conductivities up to 10-1 S.cm-1 (95% RH). Proton conduction increases with the functionalisation content, however heat treatment of nanoparticles locks the functionality in the crystal phase, thus inhibiting proton conduction. Controlling the mesopore phase allows for high proton conduction at hydrated conditions, clearly indicating facilitated ion transport through the pore channels.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.
Resumo:
Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.