992 resultados para small fruits
Resumo:
Management of coastal species of small cetaceans is often impeded by a lack of robust estimates of their abundance. In the Austral summers of 1997−98, 1998−99, and 1999−2000 we conducted line-transect surveys of Hector’s dolphin (Cephalorhynchus hectori) abundance off the north, east, and south coasts of the South Island of New Zealand. Survey methods were modified for the use of a 15-m sailing catamaran, which was equipped with a collapsible sighting platform giving observers an eye-height of 6 m. Eighty-six percent of 2061 km of survey effort was allocated to inshore waters (4 nautical miles [nmi] or 7.4 km from shore), and the remainder to offshore waters (4−10 nmi or 7.4–18.5 km from shore). Transects were placed at 45° to the shore and spaced apart by 1, 2, 4, or 8 nmi according to pre-existing data on dolphin density. Survey effort within strata was uniform. Detection functions for sheltered waters and open coasts were fitted separately for each survey. The effect of attraction of dolphins to the survey vessel and the fraction of dolphins missed on the trackline were assessed with simultaneous boat and helicopter surveys in January 1999. Hector’s dolphin abundance in the coastal zone to 4 nmi offshore was calculated at 1880 individuals (CV=15.7%, log-normal 95% CI=1384−2554). These surveys are the first line-transect surveys for cetaceans in New Zealand’s coastal waters.
Resumo:
Extensive plankton collections were taken during seven September cruises (1990–93) along the inner continental shelf of the northcentral Gulf of Mexico (GOM). Despite the high productivity and availability of food during these cruises, significant small-scale spatial variability was found in larval growth rates for both Atlantic bumper (Chloroscombrus chrysurus, Carangidae) and vermilion snapper (Rhomboplites aurorubens, Lutjanidae). The observed variability in larval growth rates was not correlated with changes in water temperature or associated with conspicuous hydrographic features and suggested the existence of less-recognizable regions where conditions for growth vary. Cruise estimates of mortality coefficients (Z) for larval Atlantic bumper (n=32,241 larvae from six cruises) and vermilion snapper (n= 2581 larvae from four cruises) ranged from 0.20 to 0.37 and 0.19 to 0.29, respectively. Even in a subtropical climate like the GOM, where larval-stage durations may be as short as two weeks, observed variability in growth rates, particularly when combined with small changes in mortality rates, can cause order-of-magnitude differences in cumulative larval survival. To what extent the observed differences in growth rates at small spatial scales are fine-scale “noise” that ultimately is smoothed by larger-scale processes is not known. Future research is needed to further characterize the small-scale variability in growth rates of larvae, particularly with regard to microzooplankton patchiness and the temporal and spatial pattern of potential predators. Small-scale spatial variability in larval growth rates may in fact be the norm, and understanding the implications of this subtle mosaic may help us to better evaluate our ability to partition the causes of recruitment variability.
Resumo:
Two bycatch reduction devices (BRDs)—the extended mesh funnel (EMF) and the Florida fisheye (FFE)—were evaluated in otter trawls with net mouth circumferences of 14 m, 17 m, and 20 m and total net areas of 45 m2. Each test net was towed 20 times in parallel with a control net that had the same dimensions and configuration but no BRD. Both BRDs were tested at night during fall 1996 and winter 1997 in Tampa Bay, Florida. Usually, the bycatch was composed principally of finfish (44 species were captured); horseshoe crabs and blue crabs seasonally predominated in some trawls. Ten finfish species composed 92% of the total finfish catch; commercially or recreationally valuable species accounted for 7% of the catch. Mean finfish size in the BRD-equipped nets was usually slightly smaller than that in the control nets. Compared with the corresponding control nets, both biomass and number of finfish were almost always less in the BRD-equipped nets but neither shrimp number nor biomass were significantly reduced. The differences in proportions of both shrimp and finfish catch between the BRD-equipped and control nets varied between seasons and among net sizes, and differences in finfish catch were specific for each BRD type and season. In winter, shrimp catch was highest and size range of shrimp was greater than in fall. Season-specific differences in shrimp catch among the BRD types occurred only in the 14-m, EMF nets. Finfish bycatch species composition was also highly seasonal; each species was captured mainly during only one season. However, regardless of the finfish composition, the shrimp catch was relatively constant. In part as a result of this study, the State of Florida now requires the use of BRDs in state waters.
Resumo:
The bays and estuaries of the southeast United States coast generally are thought to serve as nursery areas for various species of coastal sharks, where juvenile sharks find abundant food and are less exposed to predation by larger sharks. Because these areas typically support substantial commercial and recreational fisheries, fishing mortality of sharks in the nurseries particularly by bycatch, may be significant. This two-year project assessed the relative importance of two estuaries of the southwest Florida Gulf coast, Tampa Bay and Charlotte Harbor/Pine Island Sound, as shark nursery areas, and examined potential fishing mortality of these young sharks in the nurseries.