943 resultados para scanning optical microscope
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Citotoxicidade do ácido peracético: avaliação metabólica, estrutural e de morte em fibroblastos L929
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This study aims to evaluate the corrosion resistance of Ti-30Ta alloy when subjected to different strain rates. Samples of the alloy Ti-30Ta were obtained from the melting of pure elements in the arc furnace in inert atmosphere (argon gas). Then, the samples were subjected to a thermal treatment and to cold worked to obtain bars. After forging, the samples were machined in accordance with ASTME9-09 standard for carried out compression tests. To microstructural characterization, samples were sectioned longitudinal and transversally and embedded in resin. After, the wet sanding and polishing were performed, followed by a chemical attack, in order to study the microstructure under an optical microscope. Microhardness was measured on the samples that were subjected to microstructural characterization by using microhardness tester. Phases were evaluated by x-rays diffraction. Corrosion tests were carried out to evaluate the influence of deformation on the corrosion resistance. Results show that microstructure was not influenced by deformation
Resumo:
The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm
Resumo:
Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This study aims to evaluate the corrosion resistance of Ti-30Ta alloy when subjected to different strain rates. Samples of the alloy Ti-30Ta were obtained from the melting of pure elements in the arc furnace in inert atmosphere (argon gas). Then, the samples were subjected to a thermal treatment and to cold worked to obtain bars. After forging, the samples were machined in accordance with ASTME9-09 standard for carried out compression tests. To microstructural characterization, samples were sectioned longitudinal and transversally and embedded in resin. After, the wet sanding and polishing were performed, followed by a chemical attack, in order to study the microstructure under an optical microscope. Microhardness was measured on the samples that were subjected to microstructural characterization by using microhardness tester. Phases were evaluated by x-rays diffraction. Corrosion tests were carried out to evaluate the influence of deformation on the corrosion resistance. Results show that microstructure was not influenced by deformation
Resumo:
The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm
Resumo:
Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to compare the inorganic content and morphology of one nanofilled and one nanohybrid composite with one universal microhybrid composite. The Vickers hardness, degree of conversion and scanning electron microscope of the materials light-cured using LED unit were also investigated. One nanofilled (Filtek (TM) Supreme XT), one nanohybrid (TPH (R) 3) and one universal microhybrid (Filtek (TM) Z-250) composite resins at color A2 were used in this study. The samples were made in a metallic mould (4 mm in diameter and 2 mm in thickness). Their filler weight content was measured by thermogravimetric analysis (TG). The morphology of the filler particles was determined using scanning electron microscope equipped with a field emission gun (SEM-FEG). Vickers hardness and degree of conversion using FT-IR spectroscopy were measured. Filtek (TM) Z-250 (microhybrid) composite resin shows higher degree of conversion and hardness than those of Filtek (TM) Supreme XT (nanofilled) and TPH (R) 3 (nanohybrid) composites, respectively. The TPH3 (R) (nanohybrid) composite exhibits by far the lowest mechanical property. Nanofilled composite resins show mechanical properties at least as good as those of universal hybrids and could thus be used for the same clinical indications as well as for anterior restorations due to their high aesthetic properties. Microsc. Res. Tech. 75:758765, 2012. (C) 2011 Wiley Periodicals, Inc
Resumo:
Aspergillus phoenicis biofilms on polyethylene as inert support were used to produce fructooligosaccharides (FOS) in media containing 25% (m/V) of sucrose as a carbon source. The maximum production of total FOS (122 mg/mL), with 68% of 1-kestose and 32% of nystose, was obtained in Khanna medium maintained at 30 degrees C for 48 h under orbital agitation (100 rpm). At high concentrations of sucrose (30%, m/V), the recovery of FOS was higher than that observed at a low concentration (5%, m/V). High levels of FOS (242 mg/mL) were also recovered when using the biofilm in sodium acetate buffer with high sucrose concentration (50%, m/V) for 10 h. When the dried biofilm was reused in a fresh culture medium, there was a recovery of approx. 13.7% of total FOS after 72 h of cultivation at 30 C, and 10% corresponded to 1-kestose. The biofilm morphology, analyzed by scanning electron microscope, revealed a noncompact mycelium structure, with unfilled spaces and channels present among the hyphae. The results obtained in this study show that A. phoenicis biofilms may find application for FOS production in a single-step fermentation process, which is cost-effective in terms of reusability, downstream processing and efficiency.
Resumo:
We review the previous literature and our recent work on first-principles studies of Cu3Au(100) and (111) surfaces, with focus on the segregation of atomic species to the surface at pristine conditions and in the presence of oxygen. In particular, the combined use of experimental and theoretical tools to achieve chemical identification at an atomic level of the surface species is emphasized and discussed.