987 resultados para orientamento :: 341 :: Orientamento A
Resumo:
Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.
Resumo:
In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.
Resumo:
The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered, leading to dietary exposure estimates of 30.8 mu g of acrylamide day(-1) for an average 77 kg human male. This is considerably higher than the European legal limit of acrylamide in drinking water, which is approximately 0.2 mu g of acrylamide person(-1) day(-1). A recent study of 62,573 women over 11.3 years has observed an increased risk of postmenopausal endometrial and ovarian cancer (but not breast cancer) with increasing dietary acrylamide intake, demonstrating significant risk to human health. As individual acrylamide exposure is affected by dietary habits, cooking methods, and cigarette consumption; accurate extrapolation from estimated dietary exposure is extremely difficult. Quantifying biomarkers of acrylamide exposure therefore remains the most effective means of rapidly determining individual exposure to acrylamide, and correlating exposure with lifestyle choices. Current methodologies for the analysis of blood biomarkers of acrylamide are focused on expensive, slower chromatographic techniques such as GC and LC coupled to mass spectrometry. This paper describes the first successful development of two monoclonal antibodies specific to acrylamide-adducted haemoglobin (IC50 of 94 ng ml(-1) and 198 ng ml(-1)), that are suitable for use in a high-throughput biomarker immunoassay to determine individual acrylamide exposure. Further development of acrylamide-haemoglobin standards with defined levels of acrylamide adduction will enable a fully quantitative assay, and allow sensitivity comparisons with alternative chromatographic methods of analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Desmoplastic small round cell tumor (DSRCT) is a rare undifferentiated neoplasm. The prognosis is poor, even if therapy is instituted promptly. and thus it is important to differentiate it from other histologically and cytologically similar-looking malignancies of the young adult. We present a case of DSRCT in a 17-yr-old male with disseminated peritoneal disease and peritoneal effusion. The cytology sample showed a malignant small round cell tumor, the classical cytological features of DSRCT, and immunohistochemistry performed in the prepared cell block exhibited an antibody expression profile in keeping with DSRCT. Further material front the effusion was prepared for RNA extraction, following which a reverse-transcriptase polymerase chain reaction (RTPCR) and sequencing of the t(l l;22)(p13;q11 or q12) were carried out. The result showed the presence of the reciprocal translocation and thus confirmed the diagnosis of DSRCT. This case shows how molecular techniques (including sequencing) call be applied to cytology in clarifying and confirming certain difficult diagnosis of undifferentiated neoplasms, DSRCT in this particular case. Diagn. Cytopathol. 2003;29:341-343. (C) 2003 Wiley-Liss. Inc.
Resumo:
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations1-4 (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10-3). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.
Resumo:
The effects of continuous sonication and presonication on the kinetics of oxidative dissolution of ruthenium dioxide hydrate by bromate ions under acidic conditions are reported. Compared with unsonicated and presonicated dispersions the overall rate of dissolution of continuously sonicated dispersions is significantly greater due to a reduction in the average particle size and, hence, an increase in the specific surface area. Powder dispersions subjected to continuous ultrasound and presonication exhibit an initial induction period in their corrosion kinetics; the length of this induction period increases with increasing presonication. This corrosion feature is retained in the dissolution kinetics of powder samples which have been subjected to pre-ultrasound, but which are then stirred during the dissolution process. It is believed that this apparent permanent change in the nature of the powder particles is due to the ultrasound induced formation of a very thin layer of a largely unreactive form of ruthenium dioxide (possibly due to partial dehydration) on the surface of the powder particles. A kinetic scheme, based on this model, is used to account for the observed kinetics of dissolution of RuO2 . xH2O which have been subjected to both continuous sonication and presonication.