965 resultados para oceanic
Resumo:
The Alytn fault is a huge left-slip fault zone within the Asian continent, and locates such zone that is linked to main tectonic units in the western China, which makes it is very important to the tectonic framework and ore distribution in the western China. Selecting two ophiolite zones (namely Hongliugou-Lapeiquan ophiolite zone and Sulamutage ophiolite zone) respectively located within the southern and northern part of the Altyn fault and based on analysis of field geology characteristics and geochemistry, this paper recognized the rock types (mainly mafic and ultramafic rocks) within the melanges and subdivided each lithological unit based on tectonic environment. At last, this paper rebuilt the paleo-tectonic framework in the Alytn region by the method of tectonic facies and discussed its tectonic evolution with the theory of collision orogens. Combining former results with hard field observation and geochemical analysis, this paper acquired such recognitions to two ophiolte zones within the Altyn fault zone as follows: To the typical regions (Hongliugou, Lapeiquan, Mangya and Sulamutage) within the two ophiolte zones in the Altyn fault zone, this paper offered the field geology profiles. Field geology characteristics show that they are composed of melange bases (mainly abyssal flysch and carbonate rocks) and melange blocks from various tectonic environments, often with fault contact among each lithological units, belonging to typical ophiolitic melange zone. The ultramafic rocks outcropped at the Altyn region are all harzburgites. Remant grains of primary minerals have melted residual texture and elastic deformation texture under high temperature and pressure. The whole-rock analyses show their low TiO_2 contents (0.01~0.04%), low Al, Ca and high MgO contents and wide Mg~# range (89.35~95.57). Rare earth patterns have two types, namely tabacco pipe-shped and LREE-shaped, of which the former is often seen. The chondrite-nomalized Yb values of these analyses are all lower than 1. The spinels have low Ti and high Cr content and most spinels have Cr# higher than 60. All of the above characteristics show that the ultramafic rocks in the Altyn fault zone are components of metmorphic peridotites of ophiolite from depleted mantle source and most ophiolites from this zone belong to supra-subduction zone (SSZ) type ophiolite with a few mid-ocean ridge basalt (MORB) type. Geochemical analyses show that the melange blocks within the Altyn ophiolitic melange zone have different characteristics from various tectonic environments. This paper recognized such tectonic-lithological assemblages as mid-ocean basalts, oceanic island basalts, oceanic island arc tholeiites, island arc calalkaline basalts and island arc granites and inferred that these tectonic-lithological units respectively belongs to such tectonic units as ophiolites, oceanic islands and/or oceanic seamounts, oceanic island arc and a~creting arcs, which show these blocks from oceanic crust and subduction zone for the most part. For the Altyn ophiolites, the chronological data show they become new from the north to the south. Combined with the study on late slip of Altyn fault and North Qilianshan orogeny, the author inferred that the Altyn region had belonged to one part of the North Qilianshan accreting wedge-arc orogeny at paleozoic, and later huge left-slip made it locate modem site.
Resumo:
Different conclusions from previous work are made from the geochemical study for the early Paleozoic volcanic rocks hosting massive sulfide deposits in the north Qilian Orogen. The main points are: (1)The geochemical characteristics of the basalts and rhyolites from the Baiyin deposit are not consistent with that of the volcanic rocks in the continental rift setting, but show the relationship with subduction. The basalts and rhyolites from the Baiyin deposit are probably individual tectonic slice piled by subduction, and there is no bimodal volcanic rock suite occurred in the Baiyin deposit. Zircon U-Pb dating constrains the magmatic emplacement of basalts and rhyolites at 475±10Ma and 453±12Ma, respectively. The basalts are characterized by enriched Th and Sr, and depleted Nb, Ta and Ti. They have relatively high Th/Nb ratios between 0.9 and 1.3. Their εNd(T) values vary from -1.2 to +3.4. The chemical and isotopic compositions display a typical subduction-related signature, and they suggest that an enriched component with the isotopic composition of EMII might have contributed to the generation of the Baiyin basalts. The basalts were likely formed in a mature island-arc or a volcanic arc built on comparatively young or thin continental crust in an active continental margin. The rhyoIites have low concentrations of LILE compared to the basalts. They do not seen to have a relationship with the basalts, because of their significantly higher εNd(T) values (+4.3~+7.7). The high and positive εNd(T) values also rule out their derivation from anatexis of the continental crust. A modeling study suggests that the source.of the Zhe-Huo and Xiaotieshan rhyolites is similar to boninite and IAT (island-arc tholeiite), and hence indicating an intra-oceanic arc environment. (2) The formation of the Shangliugou volcanic rocks from .Qilian area is also related to subduction. The basaltic andesite have low TiO_2(0.45~0.63%) and P_2O_5(0.04~0.09) content, and high Th/Nb ratios (0.3~0.6). They show flat REE patterns. Their εNd(T) values vary in a narrow range from +4.8 to +6.4. The chemical and isotopic compositions indicate that they are derived from a slightly depleted mantle source and are fromed in intra-island arc setting. The rhyolites show calc-alkaline trend. They show enriched LREE and fiat HREE patterns with obvious negative Eu anomaly. They have high Th/Ta ratios (5.0 ~ 11.7) and large negative εNd(T) values (-2.6 ~ -8.4). The rhyolites are formed in active continental margin and result from a mixed process of two endmembers, or crust assimilation. (3) The metal elements of the volcanic-hosted massive sulfide deposit have two sources, the copper and zinc are derived from rhyolitic magmas whereas the lead are probably related to old sediments overlying the rhyolites. (4) It is suggested here that the volcanic rocks hosting massive sulfide deposit in the north Qilian orogen, which are previously considered as a bimodal suite of Neo-proterozoic to middle Cambrian age in a continental rift, are virtually related to subduction magmatism in Ordovician age, and there might have no continental rift magmatism of Neo-proterozoic to middle Cambrian in the north Qilian.
Resumo:
The South continent of China lies to southeast of Eurasia block. It is an active area from the view of crust growth and continent spread and is a transition zone between continental crust and oceanic crust. The compressional wave velocities and anisotropies of typical crustal metamorphic rocks were determined at high temperature (up to 1000 ℃) and high pressure(up to 800MPa). The experimental results show that the velocities generally increase with pressure, and is unaffected by temperature up to around 550 ℃. But the velocities of all experimental samples start to drop above a temperature point. For an example, this greatly reduce the speed of wave propagation in amphibolite and serpentinite above 760 ℃ and above 550 ℃ respectively, which may be due to dehydrate of amphibole and serpentine. P-wave anisotropy coefficients of those rocks range from 2% to 10% at 800MPa and 500 ℃. The anisotropies decrease with increasing pressure at room temperature, but hardly change as function of temperature at constant 800MPa or 600MPa pressure. The average velocity of the six crustal rocks is 6.28km/s under the condition of 800MPa and 550 ℃, which is consistent with the result of deep seismic sounding data. Based on this experimental result, we deduce there may exist a lot of felsic granulites and amphibolites at the depth of 15-25km underground. With increasing temperature and pressure, the deformation behavior of the rocks undergoes from localized brittle fracture, semi-brittle deformation (cataclastic flow or semi-brittle faulting, semi-brittle flow) to homogeneous crystal-plastic flow. This transition is associated with mechanical behavior and micro-mechanism. It is very important to understanding earthquake source mechanics, the strength of the lithosphere and the style of deformation. The experiments were conducted at temperature of 600-1000 ℃, confining pressure of 500MPa, and stain rates of 10~(-4)-10~(-6) S~(-1). For fine-grained natural amphibolite, the results of experiments show that brittle faulting is major failure mode at temperature <600 ℃, but crystal-plastic deformation is dominate at temperature >800 ℃, and there is a transition with increasing temperature from sembrittle faulting to cataclastic flow and sembrittle flow at temperature of 670-750 ℃. For medium-grained natural Felsic granulite, the results of experiments show that brittle faulting is major failure mode at temperature <500 ℃, but crystal-plastic deformation is dominate at temperature >700 ℃, and there is a transition with increasing temperature from semibrittle faulting to cataclastic flow and sembrittle flow at temperature of 500-600 ℃.
Resumo:
The East Kunlun area of Xinjiang (briefly EKAX) is the western part of broadly speaking East Kunlun orogenic zone. The absence of geological data (especially ophiolites) on this area has constrained our recognition to its geology since many years. Fund by National 305 Item (96-915-06-03), this paper, by choosing the two ophiolite zones (Muztag and Southwestern Margin of Aqikekule Lake ophiolite zones) exposed at EKAX as the studied objects and by the analysis of thin section, electron probe, XRF, ICP-MS, SEM and Sm-Nd isotope, totally and sys ematically dealt with the field geological, petrological, minerological, petrochemical and geochemical characteristics (including trace, rare earth element and Sm-Nd isotope) and the tectonic setting indicated by them for each ophilite zone. Especially, this paper discussed the trace and rare earth element patterns for metamorphic peridotites, their implications and related them to the other components of ophiolite in order to totally disclose ophiolite origins. Besides, this paper also studied the petrological, geochemical and paleobiological characteristics for the cherts coexsisted with the Muztag ophiolite and the tectonic setting indicated by them. Based on these, the author discussed the tectonic evolution from Proterozoic to Permian for this area. For Muztag ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① outcropped along the Muztag-Jingyuhu fault with west-to-east strike, the ophiolite is composed of such three components as metamorphic peridotites, cumulates and volcanic rocks; ② metamophic peridotites consist of such types as lherzolites, serpentinized lherzolites and serpentinites, only pyroxenites is seen of cumulates and volcanic rocks include basalts, basaltic andesites and andesites; ③ mineralogical data on this ophiolite suggest it formed in supra-subduction zone (SSZ)environment, and its mantle wedge is heterogeneous; ④ whole-rock TiO_2 and Al_2O_3 of metamorphic peridotites indicate their original environment with the MORB and SSZ characteristics; ⑤ metamorphic peridotites have depleted LREE and flat REE patterns and volcanic rocks have enriched LREE patterns; ⑥ trace element characteristics of metamorphic peridotites imply that they had undergone Nb and Ta enrichment event after partial melting; ⑦ trace element characteristics of volcanic rocks and their tectonic diagrams show they are formed in the spreading and developed island arc environment with back-arc basin, such as rifted island arc, which is supported by the ε_(Nd)(t) -2.11~+3.44. In summary, the above evidence implies that Muztag ophiolite is formed in SSZ environment, where heterogeneous mantle wedge was metasomatised by the silica-enriched melt from subducted sediments and/or oceanic crust, which makes the mantle wedge enriched again, and this enriched mantle wedge later partially melted to form the volcanic rocks. For Southwestern Margin of Aqikekule Lake ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① it outcropped as tectonic slices along the near west-to-east strike Kunzhong fault and is composed of metamorphic perodotties, cumulates and volcanic rocks, in which, chromites are distributed in the upper part of metamorphic peridotites as pods, or in the lower part of cumulates as near-strata; ② metamorphic peridotites include serpentinites, chromite-bearing serpentinites, thlorite-epidote schists and chromitites, of which, chromitites have nodular and orbicular structure, and cumulates include pyroxenits, serpentinites, chromite-bearing serpentinites, chromites and metamorphically mafic rocks and only basalts are seen in volcanic rocks; ③ Cr# of chromites suggest that they formed in the SSZ and Al_2O_3 and TiO_2 of metamorphic peridotites also suggest SSZ environment; ④metamorphic peridotites have V type and enriched LREE patterns, cumulates have from strongly depleted LREE, flat REE to enriched LREE patterns with universally striking positive Eu anomalies and basalts show flat REE or slight enriched LREE patterns with no Eu anomalies; ⑤ trace element and Sm-Nd isotope characteristics of metamorphic peridotites imply their strikingly heterogeneous mantle character(ε_(Nd)(t)+4.39~+26.20) and later Nb, Ta fertilization; ⑥ trace element characteristics of basalts and their tectonic diagrams show they probably formed in the rifted island arc or back-arc basin enviromnent. In summary, the above evidence shows that this ophiolite formed in the SSZ environment and melts from subudcted plate are joined during its formation. Rare earth element, whole-rock and sedimentary characteristics of cherts with the Muztag ophiolite show that they formed in the continental margin environment with developed back-arc basin, and radiolarias in the cherts indicate that the upper age of Muztag ophiolite is early carboniferous. Based on the accreted wedge models of Professor Li Jiliang for Kunlunshan Mountain and combined with study on the two typical ophiolite profiles of EKAX, the author discussed the tectonic evolution of EKAX from Proterzoic to Permian.
Resumo:
In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.
Resumo:
As a part of Gangdisi-Nianqingtanggula plate, Cuoqin basin (N 29°3O'~33°20'; E 80°~90°) is situated in the west of the Tibet autonomous Region, with an area of 100000 square kilometers. Cretaceous shallow-water carbonate is widely distributed in this basin. Its accumulative thickness is more than 1000 meters. Sedimentary facies of cretaceous shallow-water carbonate and carbon isotope feature are studied in details here. On basis of two main sections researched comprehensively, five facies marks are found. With the combination of Wilson's model and ramp model, a platform-mild slope model are put forward, which is thought to be a comprehensive model for this area. There are three sedimentary circles which are comprised of terrestrial clastic tidal flat and carbonate platform facies in Duoba Member of Duoni Formation. Langshan Formation is mainly comprised of carbonate platform facies. We also studied the carbon isotope features influenced by Cretaceous Aptian-Albian's oceanic anoxic events (OAE). After correlating the δ~(13)C curves of the studied section with that of Peregrina Canyon section in Mexico, we find that there are similar δ~(13)C curves fluctuation styles, namely there is also a δ~(13)C positive excursion in shallow-water carbonate in the studied area, and the degree of δ~(13)C positive excursion in shallow-water carbonate is much higher. There are two main causes which should interpret above δ~(13)C positive excursion feature: on the one hand ,much organic carbon take much 12C off when they are buried with a higher speed during the OAE, which lead to the ~(12)C rise of oceanic total dissolved carbon (TDC),on the other hand, during the OAE there are stratification structures in pale-ocean, in the upper mixed layer with high carbon fixation (HCML). There are so much plankton organisms which absorb much ~(12)C as the ~(13)C of shallow-water carbonate in this layer rise higher. Furthermore, on the basis of the theories of carbonate isotope strata, we suggest that the currently used boundary between Aptian and Albian in the studied area is possibly above the international one, which means the main parts of Duoba Member of Duoni Foramatiom in this area should be belong to Albian in stead of Aptian.
Resumo:
River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.
Resumo:
Phosphorus is an important biological and ecological element that to a certain degree constrains ecological environment and nutrient (including carbon) cycling. Marine sedimentary phosphorites are the principal phosphorus supply of the mankind. In the eastern to southern margins of the Yangtze Craton, South China, there are two phosphogenetic events at the Doushantuo stage of the Late Sinian and the Meishucun stage of the Early Cambrian respectively, corresponding two explosion events of life across the Precambrian\Cambrian boundary. Phosphorus ores from the Sinian and Cambrian phosphate in South China can be classified roughly into two categories, namely, grained and non-grained phosphorites. Grained phosphorites, hosted in dolostone type of phosphogenetic sequences and with larger industrial values, occur mainly in margins of the Upper Yangtze Platform, formed in shallow-water environments with high hydraulic energy and influenced by frequent sea-level change. Non-grained phosphorites, hosted principally in black-shale type of phosphogenetic sequences and with smaller industrial values, are distributed mainly in the Jiangnan region where deeper-water sub-basins with low hydraulic energy were prevailing at the time of phosphogenesis. Secular change ofδ~(13)C, δ~(18) O, ~(86)Sr/~(87)Sr values of carbonates from Sinian and Cambrian sequences were determined. A negative abnormal ofδ~(13)C, δ~(18)O values and positive abnormal of 86Sr/87Sr values from the fossiliferous section of the Lowest Cambrian Meishucun Formation implies life depopulation and following explosion of life across the PrecambriamCambrian boundary. Based on a lot of observations, this paper put forward a six-stage genetic model describing the whole formational process of industrial phosphorites: 1) Phosphorus was transported from continental weathering products and stored in the ocean; 2) dissolved phosphates in the seawater were enriched in specific deep seawater layer; 3) coastal upwelling currents took this phosphorus-rich seawater to a specific coastal area where phosphorus was captured by oceanic microbes; 4) clastic sediments in this upwelling area were enriched in phosphorus because of abundant phosphorus-rich organic matters and because of phosphorus absorption on grain surfaces; 5) during early diagenesis, the phosphorus enriched in the clastic sediments was released into interstitial water by decomposition and desorption, and then transported to the oxidation-reduction interface where authigenic phosphates were deposited and enriched; 6) such authigenic phosphate-rich layers were scoured, broken up, and winnowed in shallow-water environments resulting in phosphate enrichment. The Sinian-Cambrian phosphorites in South China are in many aspects comparable with coastal-upwelling phosphorites of younger geological ages, especially with phosphorites from modern coastal upwelling areas. That implies the similarities between the Sinian-Cambrian ocean and the modern ocean. Although Sinian-Cambrian oceanic life was much simpler than modern one, but similar oceanic planktons prevail, because oceanic planktons (particularly phytoplanktons) are crucial for phosphate enrichment related to coastal upwelling. It implies also a similar seawater-layering pattern between the Sinian-Cambrian ocean and the modern ocean. The two global phosphate-forming events and corresponding life-explosion events at the Sinian and Cambrian time probably resulted from dissolved-phosphate accumulation in seawater over a critical concentration during the Earth's evolution. Such an oceanic system with seawater phosphorus supersaturation is evidently unstable, and trends to return to normal state through phosphate deposition. Accordingly, this paper put forward a new conception of "normal state <=> phosphorus-supersaturation state" cycling of oceanic system. Such "normal state <=> phosphorus-supersaturation state" cycling was not only important for the three well-known global phosphate-forming events, also related to the critical moments of life evolution on the Earth. It might be of special significance. The favorable paleo-oceanic orientation in regard to coastal-upwelling phosphorite formation suggests a different orientation of the Yangtze Craton between the Sinian time and the present time (with a 135° clockwise difference), and a 25° anti-clockwise rotation of the Yangtze Craton from late Sinian to early Cambrian. During the Sinian-Cambrian time, the Yangtze Craton might be separated from the Cathaysia Block, but might be still associated with the North China Craton.
Resumo:
Our motherland has large area of maritime space. Searching and developing ocean becomes more and more important. So Ocean Bottom Seismometer (OBS) as an absolutely necessary equipment can be used in many oceanic fields. OBS not only is an important instrument for discovering structure of lithosphere of ocean bottom, but also plays a main role of oceanic geophysical exploration. The paper introduces my relational work. The MCI micro-power broad frequency seismometer was developed independently. Its power dissipation is less than 300mW. It has some merits including miniature volumeN light mass and cheap price. It is an ideal device not only for the collection high-resolution natural seismic data, but also for the fields of seismic sounding and engineering seismology. Many new high technique were applied to develop this instrument including over-sampling A/D converter, high performance 32bit Micro Process Unit and Flash memory with smart-media interface. Base on the achievement, I have accomplished the showpiece of OBS, which is applied to the deepwater oil and gas geophysical exploration. Because of micro-power dissipation, the seismograph and the sonar releaser can be integrated into a sphere cabin. By this means, the instrument's frequency of resonance and frequency of couple are improved obviously. The data acquisition system of OBS is improved from MCI seismometer. The capacity of flash memory is enlarge from 1G bytes to 8G bytes. The advance MPU in data acquisition system is used to integrate other function modules such as sonar, GPS, compass and digital transmitter.
Resumo:
Snow chemistry research helps to found the basis of studying ice cores. Samples of fresh snow and snow pits were collected from East Rongbuk Glacier on the north slope of Mt. Qomolangma during October, 2002. Major soluble ions (Na~+, NH_4~+, K~+, Mg~(2+), Ca~(2+), Cl~-, NO_3~- and SO_4~(2-)) andδ~(18)O were detected for analysis. Source analysis showed that major sources contributing to the snow chemistry in Mt. Qomolangma region are remote Asian dust and salt lake dust, sea-salt aerosols from Indian monsoon, local rock-mineral dust, human activities and natural atmospheric procedures. Principal factor analysis indicated that high-concentration group was dominated by continental dust with little oceanic source, indicating continental or local precipitation, while the low group dominated by oceanic aerosols indicated oceanic precipitation. Local mineral dust was a minor a source characterized mainly by Ca~(2+), Mg~(2+) contribution. Ammonia related mainly with continental dusts and nitrogen-circulation processes in the atmosphere, it also had a peculiar source should be seasonal agriculture activities in the south Asia. Nitrate showed bad correlations with other ions for its special chemical characteristics. δ~(18)O and major soluble ions displayed obvious seasonal variations. The summer precipitation had very low ion loadings and relatively lower heavy oxygen isotope from the Indian Ocean with occasionally ion peaks formed by local evaporation. While the winter and spring precipitation had high ion loadings and δ~(18)O value for the great amount of continental dust and evaporated vapors. Frequent fluctuations of δ~(18)O and ion concentration occur during the transitional period, indicating alternated precipitations by various air mass types. Ion concentration in snow from the Qomolangma region is comparable with from the Antactica, representing relatively pure background of atmospheric environment on earth. While the high concentration is close to the glaciers' located near the major sources of Asian dust. Compared with the snow chemistry of South Slope of Mt. Qomolangma, the North Slope has lower sea-salt ion concentration during summer monsoon and higher concentration of all major ions during pre- and post-monsoon period due to it's special geophysical location.
Resumo:
These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.
Resumo:
Data on seawater carbon isotope in the Mesoproterozoic and Neoproterozoic is abundant. However, the sulfur isotopic age curve of seawater sulfates determined through the analysis of sulfur isotopic composition of marine evaporite is uncertain in the Mesoproterozoic and Neoproterozoic since evaporites are generally rare in Precambrian. The Mesoproterozoic and Neoproterozoic Carbonate Formations preserve not only the carbon isotopic records, but also the sulfur isotopic records of coeval seawater in the Huabei Platform and the Yangtze Platform, China. Sulfur isotopic composition can be determined by the extraction of trace sulfate from carbonate samples. Successive measurements of sulfur and carbon isotopic compositions of carbonate samples from the Mesoproterozoic and Neoproterozoic strata in the Huabei Platform and the Yangtze Platform was accomplished through the extracting of trace sulfate from carbonates. Sulfur and carbon isotopic compositions of coeval seawater were obtained from analytical results of sulfur and carbon isotopes of the same sample without diagenetic alteration. The high-resolution age curve of sulfur isotope given in this paper may reflect the trend of variations in sulfur isotope composition of seawater sulfates during the Mesoproterozoic and Neoproterozoic. It can be correlated with the characteristics of variation in age curve of carbon isotope of coeval seawater carbonates. The δ34S values of seawater varied from +10.3-37.0‰ during the Mesoproterozoic, which took on oscillated variation on the whole. The δ34S values took on high values in the Mesoproterozoic Chuanlinggou stage, Tuanshanzi stage Tieling stage and in Neoproterozoic Jing'eryu stage. The average of those was about +30‰. The sulfates have low δ34S values in the Mesoproterozoic Yangzhuang stage and Hongshuizhuang stage, The average of those was all lower than +20‰. There occured large-amplitude changs in δ34S values of seawater during the Mesoproterozoic. Large-amplitude oscillate of 534S values occured in the intervals of 1600~1400Ma and 1300~1200Ma. The δ13C values of seawater are mostly negative in Changcheng stage of late Paleoproterozoic, -0 ± 1‰ range in Jixian stage of Mesoproterozoic , and the positive 2±2‰ commonly in early Neoproterozoic Jing'eryu stage. From 1000 Ma to 900 Ma, about 108 years interval of oceanic 513C record is shortage. At the end of Paleoproterozoic (1700 - 1600 Ma), the oceanic 813C values change from -3‰ to 0‰, but strongly oscillate near 1600 Ma. Two larger variations of seawater 513C values occur in the Mesoproterozoic: one is a cycle of about 4%o happens at ca. 1400 Ma; another is rise from >2‰ to>5‰ at ca. 1250 Ma and then become stable at the near 1000 Ma. There appears a large positive excursion over +20‰ in 534S value of ancient seawater sulfates in the early Doushantuo stage. Simultaneously, 8 C values of ancient seawater occur a positive excursion reaching 10‰. These allow δ4S values and 513C values to reach high values of+51.7‰ and +6.9‰, respectively. The range of variation in 834S values of seawater is relatively narrow and 513C values are quite high in the middle Doushantuo stage. Then, δ34S values of seawater become oscillating, the same happens in δ13C values. Negative excursions in 834S values and 813C values occur simultaneously at the end of the Doushantuo stage, and the minimum of δ34S values and δ13C values dropped to -11.3‰ and -5.7‰, respectively. The ancient seawater in the Dengying stage has high δS values and δ13C values. Most of the δ34S values of the trace sulfate samples varied between +23.6‰ and +37.9‰ except two boundaries of the Dengying Formation, and the S13C values of the carbonate samples of the Dengying Formation varied between +0.5‰ and +5.0‰. There appeared large negative excursion in 834S values and δ13C values of ancient seawater at the bounder of Precambrian-Cambrian. The isotopic characteristics of sulfur and carbon implicated that the organic productivity and isotopic fractionation caused by biology were low and the palaeoceanic environment was quite unstable during the Mesoproterozoic. The increase and subsequent oscillation of seawater δ13C value occurred from 1700 to 1600 Ma and near 1300 Ma may be responsible to the two global tectonic events happened at coeval time. The characteristics of variation in sulfur and carbon isotopes of ancient seawater imply strong changes in oceanic environment, which became beneficial to inhabitation and propagation of organism. The organic production and the burial rate of organic carbon once reached a quite high level during the Doushantuo stage. However, the state of environment became unstable that means the global climate and the environment possibly were fluctuating and reiterating after the global glaciation. The negative excursions of S34S values and δ13C values occurring at the end of the Doushantuo stage represent a global event, which might be relative to the oxidation of deep seawater. The isotopic characteristics of sulfur and carbon implicated that there were a high organic productivity and a high burial rate of organic carbon in the Dengying stage. It is obvious that the palaeoceanic environment in Dengying stage was stable corresponding and beneficial for biology to inhabit and propagate except for the two boundaries. The tendency of sulfur and carbon isotopic variations maybe resulted from the gradual oxygenation of ocean environment during the Dengying stage. It has been reported that the secular variations of the sulfur isotopic compositions in seawater was negative correlated with that of carbon isotopic compositions. However, our results show that it is not the case. They were negatively correlated in some intervals and positively in some other intervals of the Mesoproterozoic and Neoproterozoic. The difference in correlation may be associated with the changes in conditions of redox in oceanic environment, e.g. sharp change of the oxidation-reduction interface. The strong changes in global environment may induce the abnormality to occur in the biogeo chemical S and C cycles in the ocean and accordingly sharp Variations in isotopic composition of seawater sulfur and carbon during the Mesoproterozoic and Neoproterozoic. Simultaneously, the global tectonism caused large changes of 87Sr/86Sr ratios. The leading factor that causes the variation in isotopic composition is different in the different intervals of the Mesoproterozoic and Neoproterozoic. Thus, there may exist different models of the biogeochemical S and C cycles in the ocean during the Mesoproterozoic and Neoproterozoic.
Resumo:
Anduo area is located in the Central Tibet, the middle segment of the Bangonghu-Nujiang suture. Anduo Block is the northern part of Lhasa terrane. The relationships among the different geological bodies were determined during the 1: 250000 regional geological surveying. Petrography, petrologic geochemistry, isotopic geochemistry and geochronology of igneous rocks from the suture and granitoids from Anduo Block were analyzed systematically as a whole for the first time. Then, their tectonic setting and history are discussed.Anduo ophiolitic melange consists of metamorphic peridotites, cumulates, plagiogranites, sheeted dykes swarm, pillow lava and radiolarian cherts. The concentration of Cr and Ni in the metamorphic peridotites is very high, with Mg# about 0.94 ~ 0.97, higher 87Sr/86Sr and Pb isotopic ratios, and lower 143Nd/i44Nd ratio. LREE is enriched relative to HREE and positive Eu anomaly is very clear. The REE distribution curve is U shape. Nb and Ta anomalies from cumulate gabbro and sheeted dyke swarm are not clear, while that are slightly negative from pillow lava. Plagiogranite belongs to strong calc-alkaline series with high Si, middle Al, low Fe, Mg and low K contents. Eu anomaly (~ 1.23) from plagiogranites is slightly positive. The character of all components of ophiolite is similar to that of the MORB, while to some extent the ophiolite was influenced by crustal material. Anduo ophiolite formed in a mature back-arc basin. Additionally, intermediate acidity volcanic rocks within Anduo phiolite melange are island arc calc-alkline rocks related to ocean subduction.The early-middle Jurassic plutonic rocks are tonalite, granodiorite bearing-phenocryst, magaporphyritic hornblende monzogranite, magaporphyritic monzogranite, monzogranite bearing-phenocryst and syenogranite in turn. They belong to calc-alkaline series which developed from middle K to high K series temporally. REE distribution curves of all plutonic rocks are similar and parallel to each other. SREE and negative Eu anomaly values decrease. In the multi-element spider diagram, the curves of different plutons are similar to each other, but troughs of Nb, Sr, P and Ti from young plutons become more evident. This suggests that thereare some closely petrogenetic affinities among plutonic rocks which make up amagma plutonism cycle of the early-middle Jurassic. Magma source is mainly crustal,but abundant mafic microgranular enclaves within granitoids indicate that crastalmagma should be mixed with mantle-derived magma and the mantle-derived magmadecreased subsequently. Tonalite has features of I-type granite, magaporphyriticmonzogranite is transition type, and monzogranite bearing-phenocryst is S-typegranite. The characteristic of granitoids from Anduo Block suggest that the formingtectonic setting is active continental margin.Reliable zircon U-Pb SHRIMP ages are obtained in the study area firstly. Plagiogranite from the Anduo ophiolite of the Bangonghu-Nujiang suture is 175.1 Ma, and granitoids from Anduo Block is 172.6-185.4 Ma. Additionally, plagioclase from the plagiogranite dates a 40Ar/39Ar age of 144 Ma, while biotite and hornblend from granitoids of Anduo Block give a 163-165 Ma.Similar cooling ages of plagiogranite from the Anduo ophiolitic melange and granitoids from Anduo Block and the spatial distribution of the ophiolitic rocks between Anduo, Naqu, and Shainzha area suggest that bilateral subduction of the Bangonghu-Nujiang oceanic basin took place in the early-middle Jurassic. During this subduction, Anduo ophiolitic rocks were related to north subduction of the Bangonghu-Nujiang oceanic basin and Anduo back-arc basin spreading, while granitoids from Anduo Block were related to south subduction.
Resumo:
The foreland basin on the northern margin of the lower reach of the Yangtze river (the lower Yangtze foreland basin) is tectonically situated in the basin-mountain transitional area along the southeastern flank of the Dabie mountains. The early formation and development of the basin is closely related to the open-up of the Mian-Lue paleo-oceanic basin on the southern margin of the Central Orogenic System represented by Qinling-Dabei orogenic belt, while the tectonic evolution of the middle-late stage of the basin is mainly related to development of the Mian-Lue tectonic zone that occurred on the basis of the previous Mian-Lue paleo-suture. The foreland basin of the northern rim of the lower reach of the Yangtze river was formed during the middle-Triassic collision between the Yangtze and North China plates and experienced an evolution of occuirence-development-extinction characterized by marine facies to continental facies and continental margin to intracontinent in terms of tectonic setting.The foreland basin (T2-J2) was developed on the basis of the passive continental marginal basin on the south side of the Mian-Lue paleo-ocean and superimposed by late Jurassic-Tertiary fault basin. The tectonic setting underwent a multiple transformation of rifting-collisional clososing-tensional faulting and depression, which resulted in changes of the property for the basin and the final formation of the superposed compose basin in a fashion of 3-story-building. According to the tectonic position and evolution stages of plate collision happening on the southeastern margin of the Dabie mountains, and tectono-tratigraphic features shown by the foreland basin in its main formational period, the evolution of the foreland basin can be divided into four stages: 1) pre-orogenic passive margin (P2-Ti). As the Mian-Lue ocean commenced subduction in the late-Permian, the approaching of the Yangtze and North China plates to each other led to long-periodical and large-scale marine regression in early Triassic which was 22 Ma earlier than the global one and generated I-type mixed strata of the clastic rocks and carbonate, and I-type carbonate platform. These represent the passive stratigraphy formed before formation of the foreland basin. 2) Foreland basin on continental margin during main orogenic episode (T2.3). The stage includes the sub-stage of marine foreland basin (T2X remain basin), which formed I-type stratigrphy of carbonate tidal flat-lagoon, the sub-stage of marine-continental transition-molasse showing II-type stratigraphy of marine-continental facies lake - continental facies lake. 3) Intracontinental foreland basin during intracontinental orogeny (Ji-2)- It is characterized by continental facies coal-bearing molasses. 4) Tensional fault and depression during post-orogeny (J3-E). It formed tectono-stratigraphy post formation of the foreland basin, marking the end of the foreland evolution. Fold-thrust deformation of the lower Yangtze foreland basin mainly happened in late middle-Jurassic, forming ramp structures along the Yangtze river that display thrusting, with deformation strength weakening toward the river from both the Dabie mountains and the Jiangnan rise. This exhibits as three zones in a pattern of thick-skinned structure involved the basement of the orogenic belt to decollement thin-skinned structure of fold-thrust from north to south: thrust zone of foreland basin on northern rim of the lower reach of the Yangtze river, foreland basin zone and Jiannan compose uplift zone. Due to the superposed tensional deformation on the earlier compressional deformation, the structural geometric stratification has occurred vertically: the upper part exhibits late tensional deformation, the middle portion is characterized by ramp fault -fold deformation on the base of the Silurian decollement and weak deformation in the lower portion consisting of Silurian and Neo-Proterozoic separated by the two decollements. These portions constitutes a three-layered structural assemblage in a 3-D geometric model.From the succession of the lower reach of the Yangtze river and combined with characteristics of hydrocarbon-bearing rocks and oil-gas system, it can be seen that the succession of the continental facies foreland basin overlies the marine facies stratigraphy on the passive continental margin, which formed upper continental facies and lower marine facies hydrocarbon-bearing rock system and oil-gas forming system possessing the basic conditions for oil-gas occurrence. Among the conditions, the key for oil-gas accumulation is development and preservation of the marine hydrocarbon-bearing rocks underlying the foreland basin. The synthetic study that in the lower Yangtze foreland basin (including the Wangjiang-Qianshan basin), the generation-reservoir-cover association with the Permian marine facies hydrocarbon-bearing rocks as the critical portion can be a prospective oil-gas accumulation.Therefore, it should aim at the upper Paleozoic marine hydrocarbon-bearing rock system and oil-gas forming system in oil-gas evaluation and exploration. Also, fining excellent reservoir phase and well-preserved oil-gas accumulation units is extremely important for a breakthrough in oil-gas exploration.
Resumo:
Este documento apresenta os procedimentos para instalação e utilização do sistema NAVPRO 3.0, desenvolvido para o processamento automático e geração de produtos de imagens do sensor Advanced Very High Resolution Radiometer (AVHRR) a bordo dos satélites da National Oceanic Atmospheric Administration (NOAA). O sistema NAVPRO foi criado pela Embrapa Informática Agropecuária em parceria com a Universidade Estadual de Campinas (Unicamp), que contou com o repasse do pacote computacional NAV (NAVigation), desenvolvido pelo Colorado Center for Astrodynamics Research (CCAR), da Universidade do Colorado, Boulder, EUA. O diferencial do sistema é seu método de georreferenciamento automático e preciso, capaz de gerar imagens com deslocamentos máximos de 1 pixel, valor aceito em aplicações envolvendo dados de baixa resolução espacial.