920 resultados para nonparametric inference


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scientific evidence on climate changes at global level has gained increasing interest in the scientific community in general. The impacts of climate change as well as anthropogenic actions may cause errors in hydro-agricultural projects existent in the watershed under study. This study aimed to identify the presence or absence of trend in total annual precipitation series of the watershed of the Mirim Lagoon, state of Rio Grande do Sul-RS / Brazil / Uruguay (Brazilian side) as well as to detect the period in which they occurred. For that, it was analyzed the precipitation data belonging to 14 weather stations. To detect the existence of monotonic trend and change points, it was used the nonparametric tests of Mann-Kendall and Mann-Whitney, the "t" test of Student for two samples of unpaired data (parametric), as well as the technique of progressive mean. The Weather Station 3152014 (Pelotas) presented changes in the trend in the series of annual precipitation in the period from 1953 to 2007. The methodologies that use subdivided series were more efficient in detecting change in trend when compared with the Mann-Kendall test, which uses the complete series (from 1921 to 2007).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aimed to develop a Fuzzy inference based on expert system to help preventing lameness in dairy cattle. Hoof length, nutritional parameters and floor material properties (roughness) were used to build the Fuzzy inference system. The expert system architecture was defined using Unified Modelling Language (UML). Data were collected in a commercial dairy herd using two different subgroups (H1 and H2), in order to validate the Fuzzy inference functions. The numbers of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) responses were used to build the classifier system up, after an established gold standard comparison. A Lesion Incidence Possibility (LIP) developed function indicates the chances of a cow becoming lame. The obtained lameness percentage in H1 and H2 was 8.40% and 1.77%, respectively. The system estimated a Lesion Incidence Possibility (LIP) of 5.00% and 2.00% in H1 and H2, respectively. The system simulation presented 3.40% difference from real cattle lameness data for H1, while for H2, it was 0.23%; indicating the system efficiency in decision-making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values ​​calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA).METHODS: We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test.RESULTS: The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels.CONCLUSION: The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cedrela odorata L. (Meliaceae) occurs in the Atlantic forest, Amazon rain forest, riparian forest of the country, and wetlands, which demand species adapted to their water conditions. Studies in ecological wood anatomy demonstrated that weather factors' variations have direct influence on the wood anatomical structure and that the fragmentation of the natural habitats is a direct cause of the edge effect which alters the abiotic aspects of the location, interfering consequently in its vegetation. A comparative analysis of 20 anatomical quantitative features of the wood structure was performed in populations of Cedrela odorata growing inside and on the edge of the swamp forest and granulometric analysis was made on the soil. The quantitative data were submitted to the Mann-Whitney's nonparametric test, presenting a statistically significant value decrease in the eleven wood features mean for the specimens growing in the edge of swamp forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic nephropathy (DN) is characterized structurally by progressive mesangial deposition of extracellular matrix (ECM). Transforming growth factor-ß (TGF-ß) is considered to be one of the major cytokines involved in the regulation of ECM synthesis and degradation. Several studies suggest that an increase in urinary TGF-ß levels may reflect an enhanced production of this polypeptide by the kidney cells. We evaluated TGF-ß in occasional urine samples from 14 normal individuals and 23 patients with type 2 diabetes (13 with persistent proteinuria >500 mg/24 h, DN, 6 with microalbuminuria, DMMA, and 4 with normal urinary albumin excretion, DMN) by enzyme immunoassay. An increase in the rate of urinary TGF-ß excretion (pg/mg UCreat.) was observed in patients with DN (296.07 ± 330.77) (P<0.001) compared to normal individuals (17.04 ± 18.56) (Kruskal-Wallis nonparametric analysis of variance); however, this increase was not observed in patients with DMMA (25.13 ± 11.30) or in DMN (18.16 ± 11.82). There was a positive correlation between the rate of urinary TGF-ß excretion and proteinuria (r = 0.70, a = 0.05) (Pearson's analysis), one of the parameters of disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to apply approximate Bayesian computation in combination with Marcov chain Monte Carlo methods in order to estimate the parameters of tuberculosis transmission. The methods are applied to San Francisco data and the results are compared with the outcomes of previous works. Moreover, a methodological idea with the aim to reduce computational time is also described. Despite the fact that this approach is proved to work in an appropriate way, further analysis is needed to understand and test its behaviour in different cases. Some related suggestions to its further enhancement are described in the corresponding chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air pollution has been associated with health effects on different age groups. The present study was designed to assess the impact of daily changes in air pollutants (NO2, SO2, CO, O3, and particle matter (PM10)) on total number of daily neonatal deaths (those that occur between the first and the 28th days of life) in São Paulo, from January 1998 to December 2000, since adverse outcomes such as neonatal deaths associated with air pollution in Brazil have not been evaluated before. Generalized additive Poisson regression models were used and nonparametric smooth functions (loess) were adopted to control long-term trend, temperature, humidity, and short-term trends. A linear term was used for holidays. The association between air pollutants and neonatal deaths showed a short time lag. Interquartile range increases in PM10 (23.3 µg/m³) and SO2 (9.2 µg/m³) were associated with increases of 4% (95% CI, 2-6) and 6% (95% CI, 4-8), respectively. Instead of adopting a two-pollutant model we created an index to represent PM10 and SO2 effects. For an interquartile range increase in the index an increase of 6.3% (95% CI, 6.1-6.5) in neonatal deaths was observed. These results agree with previous studies performed by our group showing the deleterious effects of air pollutants during the perinatal period. The method reported here represents an alternative approach to analyze the relationship between highly correlated pollutants and public health problems, reinforcing the idea of the synergic effects of air pollutants in public health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two main objectives of Bayesian inference are to estimate parameters and states. In this thesis, we are interested in how this can be done in the framework of state-space models when there is a complete or partial lack of knowledge of the initial state of a continuous nonlinear dynamical system. In literature, similar problems have been referred to as diffuse initialization problems. This is achieved first by extending the previously developed diffuse initialization Kalman filtering techniques for discrete systems to continuous systems. The second objective is to estimate parameters using MCMC methods with a likelihood function obtained from the diffuse filtering. These methods are tried on the data collected from the 1995 Ebola outbreak in Kikwit, DRC in order to estimate the parameters of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several methods are used to estimate anaerobic threshold (AT) during exercise. The aim of the present study was to compare AT obtained by a graphic visual method for the estimate of ventilatory and metabolic variables (gold standard), to a bi-segmental linear regression mathematical model of Hinkley's algorithm applied to heart rate (HR) and carbon dioxide output (VCO2) data. Thirteen young (24 ± 2.63 years old) and 16 postmenopausal (57 ± 4.79 years old) healthy and sedentary women were submitted to a continuous ergospirometric incremental test on an electromagnetic braking cycloergometer with 10 to 20 W/min increases until physical exhaustion. The ventilatory variables were recorded breath-to-breath and HR was obtained beat-to-beat over real time. Data were analyzed by the nonparametric Friedman test and Spearman correlation test with the level of significance set at 5%. Power output (W), HR (bpm), oxygen uptake (VO2; mL kg-1 min-1), VO2 (mL/min), VCO2 (mL/min), and minute ventilation (VE; L/min) data observed at the AT level were similar for both methods and groups studied (P > 0.05). The VO2 (mL kg-1 min-1) data showed significant correlation (P < 0.05) between the gold standard method and the mathematical model when applied to HR (r s = 0.75) and VCO2 (r s = 0.78) data for the subjects as a whole (N = 29). The proposed mathematical method for the detection of changes in response patterns of VCO2 and HR was adequate and promising for AT detection in young and middle-aged women, representing a semi-automatic, non-invasive and objective AT measurement.