968 resultados para multi-drug
Resumo:
The increase in drug use and related harms in the late 1990s in Finland has come to be referred to as the second drug wave. In addition to using criminal justice as a basis of drug policy, new kinds of drug regulation were introduced. Some of the new regulation strategies were referred to as "harm reduction". The most widely known practices of harm reduction include needle and syringe exchange programmes for intravenous drug users and medicinal substitution and maintenance treatment programmes for opiate users. The purpose of the study is to examine the change of drug policy in Finland and particularly the political struggle surrounding harm reduction in the context of this change. The aim is, first, to analyse the content of harm reduction policy and the dynamics of its emergence and, second, to assess to what extent harm reduction undermines or threatens traditional drug policy. The concept of harm reduction is typically associated with a drug policy strategy that employs the public health approach and where the principal focus of regulation is on drug-related health harms and risks. On the other hand, harm reduction policy has also been given other interpretations, relating, in particular, to human rights and social equality. In Finland, harm reduction can also be seen to have its roots in criminal policy. The general conclusion of the study is that rather than posing a threat to a prohibitionist drug policy, harm reduction has come to form part of it. The implementation of harm reduction by setting up health counselling centres for drug users with the main focus on needle exchange and by extending substitution treatment has implied the creation of specialised services based on medical expertise and an increasing involvement of the medical profession in addressing drug problems. At the same time the criminal justice control of drug use has been intensified. Accordingly, harm reduction has not entailed a shift to a more liberal drug policy nor has it undermined the traditional policy with its emphasis on total drug prohibition. Instead, harm reduction in combination with a prohibitionist penal policy constitutes a new dual-track drug policy paradigm. The study draws on the constructionist tradition of research on social problems and movements, where the analysis centres on claims made about social problems, claim-makers, ways of making claims and related social mobilisation. The research material mainly consists of administrative documents and interviews with key stakeholders. The doctoral study consists of five original articles and a summary article. The first article gives an overview of the strained process of change of drug policy and policy trends around the turn of the millennium. The second article focuses on the concept of harm reduction and the international organisations and groupings involved in defining it. The third article describes the process that in 1996 97 led to the creation of the first Finnish national drug policy strategy by reconciling mutually contradictory views of addressing the drug problem, at the same as the way was paved for harm reduction measures. The fourth article seeks to explain the relatively rapid diffusion of needle exchange programmes after 1996. The fifth article assesses substitution treatment as a harm reduction measure from the viewpoint of the associations of opioid users and their family members.
Resumo:
In Estonia, illicit drug use hardly existed before the social changes of the 1990s when, as a result of economic and cultural transformations, the country became part of a world order centred in the West. On the one hand, this development is due to the spread of international youth culture, which many young people have perceived as being associated with drugs; on the other hand, it results from the marginalisation of a part of the population. The empirical part of the study is based mostly on in-depth interviews with different drug users conducted during between 1998 and 2002. Complementary material includes the results of participant observations, interviews with key experts, and the results of previous quantitative studies and statistics. The young people who started experimenting with illicit drugs from the 1990s and onwards perceived them as a part of an attractive lifestyle - a Western lifestyle, a point which is worth stressing in the case of Estonia. Although the reasons for initiation into drug use were similar for the majority of young people, their drug use habits and the impact of the drug use on their lives began to differ. I argue that the potential pleasure and harm which might accompany drug use is offset by the meanings attached to drugs and the sanctions and rituals regulating drug use. In the study both recreational and problem use have been analysed from different aspects in seven articles. I have investigated different types of drug users: new bohemians, cannabis users, in whose case partying and restrictive drug use is positively connected to their lives and goals within established society; stimulant-using party people for whom drugs are a means of having fun but who do not have the same restrictive norms regulating their drug use as the former and who may get into trouble under certain conditions; and heroin users for whom the drug rapidly progressed from a means of having fun to an obligation due to addiction. The research results point at the importance not only of the drug itself and the socio-economic situation of the user, but also of the cultural and social context within which the drug is used. The latter may on occasions be a crucial factor in whether or not initial drug use eventually leads to addiction.
Resumo:
Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Hybrid approach introduced by the authors for at-site modeling of annual and periodic streamflows in earlier works is extended to simulate multi-site multi-season streamflows. It bears significance in integrated river basin planning studies. This hybrid model involves: (i) partial pre-whitening of standardized multi-season streamflows at each site using a parsimonious linear periodic model; (ii) contemporaneous resampling of the resulting residuals with an appropriate block size, using moving block bootstrap (non-parametric, NP) technique; and (iii) post-blackening the bootstrapped innovation series at each site, by adding the corresponding parametric model component for the site, to obtain generated streamflows at each of the sites. It gains significantly by effectively utilizing the merits of both parametric and NP models. It is able to reproduce various statistics, including the dependence relationships at both spatial and temporal levels without using any normalizing transformations and/or adjustment procedures. The potential of the hybrid model in reproducing a wide variety of statistics including the run characteristics, is demonstrated through an application for multi-site streamflow generation in the Upper Cauvery river basin, Southern India. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This thesis describes current and past n-in-one methods and presents three early experimental studies using mass spectrometry and the triple quadrupole instrument on the application of n-in-one in drug discovery. N-in-one strategy pools and mix samples in drug discovery prior to measurement or analysis. This allows the most promising compounds to be rapidly identified and then analysed. Nowadays properties of drugs are characterised earlier and in parallel with pharmacological efficacy. Studies presented here use in vitro methods as caco-2 cells and immobilized artificial membrane chromatography for drug absorption and lipophilicity measurements. The high sensitivity and selectivity of liquid chromatography mass spectrometry are especially important for new analytical methods using n-in-one. In the first study, the fragmentation patterns of ten nitrophenoxy benzoate compounds, serial homology, were characterised and the presence of the compounds was determined in a combinatorial library. The influence of one or two nitro substituents and the alkyl chain length of methyl to pentyl on collision-induced fragmentation was studied, and interesting structurefragmentation relationships were detected. Two nitro group compounds increased fragmentation compared to one nitro group, whereas less fragmentation was noted in molecules with a longer alkyl chain. The most abundant product ions were nitrophenoxy ions, which were also tested in the precursor ion screening of the combinatorial library. In the second study, the immobilized artificial membrane chromatographic method was transferred from ultraviolet detection to mass spectrometric analysis and a new method was developed. Mass spectra were scanned and the chromatographic retention of compounds was analysed using extract ion chromatograms. When changing detectors and buffers and including n-in-one in the method, the results showed good correlation. Finally, the results demonstrated that mass spectrometric detection with gradient elution can provide a rapid and convenient n-in-one method for ranking the lipophilic properties of several structurally diverse compounds simultaneously. In the final study, a new method was developed for caco-2 samples. Compounds were separated by liquid chromatography and quantified by selected reaction monitoring using mass spectrometry. This method was used for caco-2 samples, where absorption of ten chemically and physiologically different compounds was screened using both single and nin- one approaches. These three studies used mass spectrometry for compound identification, method transfer and quantitation in the area of mixture analysis. Different mass spectrometric scanning modes for the triple quadrupole instrument were used in each method. Early drug discovery with n-in-one is area where mass spectrometric analysis, its possibilities and proper use, is especially important.
Resumo:
Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.
Resumo:
Different seismic hazard components pertaining to Bangalore city,namely soil overburden thickness, effective shear-wave velocity, factor of safety against liquefaction potential, peak ground acceleration at the seismic bedrock, site response in terms of amplification factor, and the predominant frequency, has been individually evaluated. The overburden thickness distribution, predominantly in the range of 5-10 m in the city, has been estimated through a sub-surface model from geotechnical bore-log data. The effective shear-wave velocity distribution, established through Multi-channel Analysis of Surface Wave (MASW) survey and subsequent data interpretation through dispersion analysis, exhibits site class D (180-360 m/s), site class C (360-760 m/s), and site class B (760-1500 m/s) in compliance to the National Earthquake Hazard Reduction Program (NEHRP) nomenclature. The peak ground acceleration has been estimated through deterministic approach, based on the maximum credible earthquake of M-W = 5.1 assumed to be nucleating from the closest active seismic source (Mandya-Channapatna-Bangalore Lineament). The 1-D site response factor, computed at each borehole through geotechnical analysis across the study region, is seen to be ranging from around amplification of one to as high as four times. Correspondingly, the predominant frequency estimated from the Fourier spectrum is found to be predominantly in range of 3.5-5.0 Hz. The soil liquefaction hazard assessment has been estimated in terms of factor of safety against liquefaction potential using standard penetration test data and the underlying soil properties that indicates 90% of the study region to be non-liquefiable. The spatial distributions of the different hazard entities are placed on a GIS platform and subsequently, integrated through analytical hierarchal process. The accomplished deterministic hazard map shows high hazard coverage in the western areas. The microzonation, thus, achieved is envisaged as a first-cut assessment of the site specific hazard in laying out a framework for higher order seismic microzonation as well as a useful decision support tool in overall land-use planning, and hazard management. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.
Resumo:
We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.
Resumo:
Liver δ-aminolaevulate (ALA) synthetase and ALA dehydratase are induced to a greater extent in 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) injected mice as compared to the allyl isopropyl acetamide (AIA) injected rats. DDC treated mice do not show an increase in porphobilinogen (PEG) levels commensurate with the increase in ALA levels and the two enzyme activities, but accumulate enormous quantities of protoporphyrin in the liver. Normal mouse liver has an inherent greater capacity to convert PBG to porphyrins as compared to that of the rat. This together with the inhibition of iron incorporation into protoporphyrin in vivo at later stages of DDC administration can account for the large accumulation of protoporphyrin in these animals.
Resumo:
Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH-cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of delta-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-(14)C]allylisopropylacetamide by any of the liver subcellular fractions.
Resumo:
The present study was designed to improve the bioavailability of forskolin by the influence of precorneal residence time and dissolution characteristics. Nanosizing is an advanced approach to overcome the issue of poor aqueous solubility of active pharmaceutical ingredients. Forskolin nanocrystals have been successfully manufactured and stabilized by poloxamer 407. These nanocrystals have been characterized in terms of particle size by scanning electron microscopy and dynamic light scattering. By formulating Noveon AA-1 polycarbophil/poloxamer 407 platforms, at specific concentrations, it was possible to obtain a pH and thermoreversible gel with a pH(gel)/T-gel close to eye pH/temperature. The addition of forskolin nanocrystals did not alter the gelation properties of Noveon AA-1 polycarbophil/poloxamer 407 and nanocrystal properties of forskolin. The formulation was stable over a period of 6 months at room temperature. In vitro release experiments indicated that the optimized platform was able to prolong and control forskolin release for more than 5 h. The in vivo studies on dexamethasone-induced glaucomatous rabbits indicated that the intraocular pressure lowering efficacy for nanosuspension/hydrogel systems was 31% and lasted for 12 h, which is significantly better than the effect of traditional eye suspension (18%, 4-6 h). Hence, our investigations successfully prove that the pH and thermoreversible polymeric in situ gel-forming nanosuspension with ability of controlled drug release exhibits a greater potential for glaucoma therapy.