915 resultados para molecular dynamics method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied experimentally jump-to-contact (JC) and jump-out-of-contact (JOC) phenomena in gold electrodes. JC can be observed at first contact when two metals approach each other, while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture. Molecular dynamics simulations of this process show how the two metallic electrodes are shaped into tips of a well-defined crystallographic structure formed through a mechanical annealing mechanism. We report a detailed analysis of the atomic configurations obtained before contact and rupture of these stable structures and obtained their conductance using first-principles quantum transport calculations. These results help us understand the values of conductance obtained experimentally in the JC and JOC phenomena and improve our understanding of atomic-sized contacts and the evolution of their structural characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as “jump to contact” (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a tractable theory of transport of simple fluids in cylindrical nanopores, considering trajectories of molecules between diffuse wall collisions at low-density, and including viscous flow contributions at higher densities. The model is validated through molecular dynamics simulations of supercritical methane transport, over a wide range of conditions. We find excellent agreement between model and simulation at low to medium densities. However, at high densities the model tends to over-predict the transport behaviour, due to a large decrease in surface slip that is not well represented by the model. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The defect effect on hydrogen adsorption on single-walled carbon nanotubes (SWNTs) has been studied by using extensive molecular dynamics simulations and density functional theory (DFT) calculations. It indicates that the defects created on the exterior wall of the SWNTs by bombarding the tube wall with carbon atoms and C-2 dimers at a collision energy of 20 eV can enhance the hydrogen adsorption potential of the SWNTs substantially. The average adsorption energy for a H-2 molecule adsorbed on the exterior wall of a defected (10,10) SWNT is similar to 150 meV, while that for a H-2 molecule adsorbed on the exterior wall of a perfect (10,10) SWNT is similar to 104 meV. The H-2 sticking coefficient is very sensitive to temperature, and has a maximum value around 70 to 90 K. The electron density contours, the local density of states, and the electron transfers obtained from the DFT calculations clearly indicate that the H-2 molecules are all physisorbed on the SWNTs. At temperatures above 200 K, most of the H-2 molecules adsorbed on the perfect SWNT are soon desorbed, but the H-2 molecules can still remain on the defected SWNTs at 300 K. The detailed processes of H-2 molecules adsorbing on and desorbing from the (10,10) SWNTs are demonstrated.