941 resultados para insertion professionnelle
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allenes silastannation reaction is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. For the allene insertion step, the Pd-Si bond is preferred over the Pd-Sn bond. The electronic mechanism of the allene insertion into Pd-Si bond to form sigma-vinylpalladium (terminal-insertion) and sigma-allylpalladium (internal-insertion) insertion products is discussed ill terms of the electron donation and back-donation. It is found that the electron back-donation is significant for both terminal- and internal-insertion. During allene insertion into Pd-Si bond, internal-insertion is preferred over terminal-insertion. By using methylallene, the regio-selectivity for the monosubstituted allene insertion into Pd-Si and Pd-Sn bond is analyzed.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.
Resumo:
The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process. A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions. The results indicate that the migration of HSO4- anions was indispensable in the redox process of the heteropolyan ions in a I mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency. Such a change was attributed to different packing densities derived by means of differently immobilized methods.
Resumo:
By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.
Resumo:
Copolymerizations of ethylene with 5-vinyl-2-norbornene or 5-ethylidene-2-norbornene under the action of various titanium complexes bearing bis(beta-enaminoketonato) chelate ligands of the type, [(RN)-N-1=C(R-2)CH=C(R-3)O](2)TiCl2 (1, R-1=Ph, R-2=CF3, R-3=Ph; 2, R-1=C6H4F-p, R-2=CF3, R-3=Ph; 3, R-1=Ph, R-2=CF3, R-3=t-Bu; 4, R-1=C6H4F-p, R-2=CF3, R-3=t-Bu; 5, R-1=Ph, R-2=CH3, R-3=CF3; 6, R-1=C6H4F-p, R-2=CH3 R-3=CF3), have been shown to occur with the regioselective insertion of the endocyclic double bond of the monomer into the copolymer chain, leaving the exocyclic vinyl double bond as a pendant unsaturation. The ligand modification strongly affects the copolymerization behaviour. High catalytic activities and efficient co-monomer incorporation can be easily obtained by optimizing the catalyst structures and polymerization conditions.
Resumo:
A lutetium bis( alkyl) complex stabilized by a flexible amino phosphine ligand LLu( CH2Si(CH3)(3))(2)(THF) (L = (2,6-C6H3( CH3)(2)) NCH( C6H5) CH2P(C6H5)(2)) was prepared which upon insertion of N, N'-diisopropylcarbodiimide led to C-H activation via metalation of the ligand aryl methyl followed by reduction of the C=N double bond.
Resumo:
By incorporating 4,7-diphenyl- 2,1,3 benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light- emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (lambda max = 537 nm), the resulting polymers (lambda(max) = 521 nm) showed 10-20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/ polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A(-1) and power efficiency of 2.21 lm W-1. High EL efficiencies and good color purities made these polymers very promising for display applications.
Resumo:
Copolymerization of carbon dioxide and propylene oxide was carried out employing (RC6H4COO)(3)Y/glycerin/ZnEt2 (R = -H, -CH3, NO2, -OH) ternary catalyst systems. The feature of yttrium carboxylates (ligand, substituent and its position on the aromatic ring) is of great importance in the final copolymerization. Appropriate design of substituent and position of the ligand in benzoate-based yttrium complex can adjust the microstructure of aliphatic polycarbonate in a moderate degree, where the head-to-tail linkage in the copolymer is adjustable from 68.4 to 75.4%. The steric factor of the ligand in the yttrium complex is crucial for the molecular weight distribution of the copolymer, probably due to the fact that the substituent at 2 and 4-position would disturb the coordination or insertion of the monomer, lead the copolymer with broad molecular distribution. Based on the study of ultraviolet-visible spectra of the ternary catalyst in various solvents, it seems that the absorption band at 240-255 nm be closely related to the active species of the rare earth ternary catalysts.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
An amino isopropoxyl strontium (Sr-PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring-opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA). The Sr-PO initiator demonstrated an effective initiating activity for the ROP of epsilon-caprolactone (epsilon-CL) and L-lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr-PO initiator. Block copolymer PCL-b-PLLA was prepared by sequential polymerization of epsilon-CL and LLA, which was demonstrated by H-1 NMR, C-13 NMR, and gel permeation chromatography. The chemical structure of Sr-PO initiator was confirmed by elemental analysis of Sr and N, H-1 NMR analysis of the end groups in epsilon-CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr-PO initiator and model monomer gamma-butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination-insertion mechanism, and cyclic esters exclusively inserted into the Sr-O bond.
Resumo:
Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.
Resumo:
The half-sandwich methylcyclopentadlenyl iron carbonyl complex reacted with 1,2-dilithium diselenolate carborane Li2Se2C2B10H10 (1) which was produced by the insertion of element Se into 1, 2-dilithium carborane to give a half-sandwich binuclear iron carborane complex Cp'Fe-2(2)(CO) 3Se2C2B10H10 (3). X-ray structural analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.