976 resultados para hybrid key recovery
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Resumo:
We assessed the influence of human leukocyte antigen (HLA) alleles HLA-Bw4 and HLA-Bw6 on CD4 T cell recovery after starting successful combination antiretroviral therapy in 265 individuals. The median gains in the CD4 T cell count after 4 years were 258 cells/microL for HLA-Bw4 homozygotes, 321 cells/microL for HLA-Bw4/Bw6 heterozygotes, and 363 cells/microL for HLA-Bw6 homozygotes (P = .01, compared with HLA-Bw4 homozygotes). HLA-Bw4 homozygosity appears to predict an impaired CD4 T cell recovery after initiation of combination antiretroviral therapy.
Resumo:
The objective of this work was to evaluate photoprotective mechanisms related to low positive temperatures in Coffea canephora (Conilon clones 02 and 153) and C. arabica ('Catucaí' IPR 102) genotypes, involved in cold temperature tolerance. To accomplish this, one-year-old plants were successively submitted to: temperature decrease of 0.5ºC day-1, from 25/20ºC to 13/8ºC; a three-day chilling cycle at 13/4ºC; and a recovery period of 14 days (25/20ºC). During the experiment, leaf gas exchange, chlorophyll a fluorescence and leaf photosynthetic pigment content were evaluated. Total activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and ribulose-5-phosphate kinase (Ru5PK) were quantified to measure the activity of photosynthesis key enzymes. All genotypes showed low temperature sensitivity, but displayed diverse cold impact and recovery capabilities regarding the photosynthetic-related parameters studied. Catucaí IPR 102 cultivar showed better ability to cope with cold stress than the Conilon clones, especially Conilon 02, and had full recovery of leaf gas exchange, fluorescence parameters, enzymatic activity, and higher contents of the photoprotective pigments zeaxanthin and lutein.
Resumo:
The objective of this work was to combine asymmetric somatic hybridization (donor-recipient fusion or gamma fusion) to microprotoplast-mediated chromosome transfer, as a tool to be used for chromosome mapping in Citrus. Swinglea glutinosa microprotoplasts were irradiated either with 50, 70, 100 or 200 gamma rays and fused to cv. Ruby Red grapefruit or Murcott tangor protoplasts. Cell colonies were successfully formed and AFLP analyses confirmed presence of S. glutinosa in both 'Murcott' tangor and 'Ruby Red' grapefruit genomes.
Resumo:
Introduction: We recently observed in a chronic ovine model that a shortening of action potential duration (APD) as assessed by the activation recovery interval (ARI) may be a mechanism whereby pacing-induced atrial tachycardia (PIAT) facilitates atrial fibrillation (AF), mediated by a return to 1:1 atrial capture after the effective refractory period has been reached. The aim of the present study is to evaluate the effect of long term intermittent burst pacing on ARI before induction of AF.Methods: We specifically developed a chronic ovine model of PIAT using two pacemakers (PM) each with a right atrial (RA) lead separated by ∼2cm. The 1st PM (Vitatron T70) was used to record a broadband unipolar RA EGM (800 Hz, 0.4 Hz high pass filter). The 2nd was used to deliver PIAT during electrophysiological protocols at decremental pacing CL (400 beats, from 400 to 110ms) and long term intermittent RA burst pacing to promote electrical remodeling (5s of burst followed by 2s of sinus rhythm) until onset of sustained AF. ARI was defined as the time difference between the peak of the atrial repolarization wave and the first atrial depolarization. The mean ARIs of paired sequences (before and after remodeling), each consisting of 20 beats were compared.Results: As shown in the figure, ARIs (n=4 sheep, 46 recordings) decreased post remodeling compared to baseline (86±19 vs 103±12 ms, p<0.05). There was no difference in atrial structure as assessed by light microscopy between control and remodeled sheep.Conclusions: Using standard pacemaker technology, atrial ARIs as a surrogate of APDs were successfully measured in vivo during the electrical remodeling process leading to AF. The facilitation of AF by PIAT mimicking salvos from pulmonary veins is heralded by a significant shortening of ARI.
Resumo:
A series of 4 experiments examined the performance of rats with retrohippocampal lesions on a spatial water-maze task. The animals were trained to find and escape onto a hidden platform after swimming in a large pool of opaque water. The platform was invisible and could not be located using olfactory cues. Successful escape performance required the rats to develop strategies of approaching the correct location with reference solely to distal extramaze cues. The lesions encompassed the entire rostro-caudal extent of the lateral and medial entorhinal cortex, and included parts of the pre- and para-subiculum, angular bundle and subiculum. Groups ECR 1 and 2 sustained only partial damage of the subiculum, while Group ECR+S sustained extensive damage. These groups were compared with sham-lesion and unoperated control groups. In Expt 1A, a profound deficit in spatial localisation was found in groups ECR 1 and ECR+S, the rats receiving all training postoperatively. In Expt 1B, these two groups showed hyperactivity in an open-field. In Expt 2, extensive preoperative training caused a transitory saving in performance of the spatial task by group ECR 2, but comparisons with the groups of Expt 1A revealed no sustained improvement, except on one measure of performance in a post-training transfer test. All rats were then given (Expt 3) training on a cueing procedure using a visible platform. The spatial deficit disappeared but, on returning to the normal hidden platform procedure, it reappeared. Nevertheless, a final transfer test, during which the platform was removed from the apparatus, revealed a dissociation between two independent measures of performance: the rats with ECR lesions failed to search for the hidden platform but repeatedly crossed its correct location accurately during traverses of the entire pool. This partial recovery of performance was not (Expt 4) associated with any ability to discriminate between two locations in the pool. The apparently selective recovery of aspects of spatial memory is discussed in relation to O'Keefe and Nadel's (1978) spatial mapping theory of hippocampal function. We propose a modification of the theory in terms of a dissociation between procedural and declarative subcomponents of spatial memory. The declarative component is a flexible access system in which information is stored in a form independent of action. It is permanently lost after the lesion. The procedural component is "unmasked" by the retrohippocampal lesion giving rise to the partial recovery of spatial localisation performance.
Resumo:
Due to their high polymorphism, microsatellites have become one of the most valued genetic markers in population biology. We review the first two published studies on hybrid zones of the common shrew based on microsatellites. Both reveal surprisingly high interracial gene flow. It can be shown that these are overestimates. Indeed, in classical population genetics models as F-statistics, mutation is neglected. This constitutes an acceptable assumption as long as migration is higher than mutation. However, in hybrid zones where genetic exchanges can be rare, neglecting mutation will lead to strong overestimates of migration when working with microsatellites which display mutation rates up to 10(-3). As there seems to be no straightforward way to correct for this bias, interracial gene flow estimates based on microsatellites should be taken with caution. This problem should however not conceal the enormous potential of microsatellites to unravel the genetics of hybrid zones.
Resumo:
The purposes of this study were to prospectively determine changes in rotator cuff strength before and after surgical shoulder stabilization by Bristow-Latarjet procedure and to better estimate time needed for rotator cuff strength recovery. 20 patients with recurrent anterior posttraumatic shoulder dislocation underwent internal (IR) and external (ER) rotator isokinetic evaluation before and 3, 6 and 21 months after Bristow-Latarjet surgery. In a seated position with 45° of shoulder abduction in the scapular plane, both shoulders were evaluated concentrically with a Con-Trex® isokinetic dynamometer at 180°∙s - 1, 120°∙s - 1 and 60°∙s - 1. 3 months post-surgery, IR and ER strength of the operated shoulder were significantly lower than before surgery ( - 28±20% for IR, - 17±17% for ER) (P<0.05). At 6 and 21 months post-surgery, IR and ER strength were comparable to strength before surgery; strength recovery is seen at 6 months post-surgery with long-term maintenance at 21 months. Given the weakness 3 months post-surgery, return to sports (including overhead and contact sports) should be discussed, and 6 months post-surgery may be a better point for an athlete to resume practicing sports. Isokinetic rotator cuff strength evaluation appears to be relevant in helping to determine the need of continuing strength rehabilitation. Pre-surgical evaluation contributes to the relevance of later comparisons.
Resumo:
The objective of this work was to evaluate the genomic behavior of hybrid combinations between elephant grass (Pennisetum purpureum) and pearl millet (P. glaucum). Tetraploid (AAA'B) and pentaploid (AA'A'BB) chromosome races resulting from the backcross of the hexaploid hybrid to its parents elephant grass (A'A'BB) and pearl millet (AA) were analyzed as to chromosome number and DNA content. Genotypes of elephant grass, millet, and triploid and hexaploid induced hybrids were compared. Pentaploid and tetraploid genomic combinations showed high level of mixoploidy, in discordance with the expected somatic chromosome set. The pentaploid chromosome number ranged from 20 to 34, and the tetraploid chromosome number from 16 to 28. Chromosome number variation was higher in pentaploid genomic combinations than in tetraploid, and mixoploidy was observed among hexaploids. Genomic combinations 4x and 5x are mixoploid, and the variation of chromosome number within chromosomal race 5x is greater than in 4x.
Resumo:
The objective of this work was to verify the existence of a lethal locus in a eucalyptus hybrid population, and to quantify the segregation distortion in the linkage group 3 of the Eucalyptus genome. A E. grandis x E. urophylla hybrid population, which segregates for rust resistance, was genotyped with 19 microsatellite markers belonging to linkage group 3 of the Eucalyptus genome. To quantify the segregation distortion, maximum likelihood (ML) models, specific to outbreeding populations, were used. These models consider the observed marker genotypes and the lethal locus viability as parameters. The ML solutions were obtained using the expectation‑maximization algorithm. A lethal locus in the linkage group 3 was verified and mapped, with high confidence, between the microssatellites EMBRA 189 e EMBRA 122. This lethal locus causes an intense gametic selection from the male side. Its map position is 25 cM from the locus which controls the rust resistance in this population.
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.
Resumo:
In order to explore the magnitude and duration of the long-term residual effect of physical exercise, a mixed meal (55% CHO, 27% fat and 18% protein) was given to 10 young male volunteers on two occasions: after a 4-h resting period, and on the next day, 30 min after completion of a 3-h exercise at 50% VO2max. Energy expenditure and substrate utilization were determined by indirect calorimetry for 17 h after meal ingestion. The fuel mix oxidized after the meal was characterized by a greater contribution of lipid oxidation to total energy expenditure when the meal was ingested during the post-exercise period as compared with the meal ingested without previous exercise. During the night following the exercise, the stimulation of energy expenditure observed during the early recovery period gradually faded out. However, resting energy expenditure measured the next morning was significantly higher (+4.7%) than that measured without previous exercise. It is concluded that intense exercise stimulates both energy expenditure and lipid oxidation for a prolonged period.