926 resultados para genomic fingerprinting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and genomic selection strategies, knowledge of the available genetic variation and the underlying sequence polymorphisms, is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vacuolating autotransporter (AT) toxin (Vat) contributes to Uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here we characterised Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, 73 and 95) and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator, which we termed vatX. The vat-vatX genes were present in the UPEC reference strain CFT073 and RT-PCR revealed both genes are co-transcribed. Over-expression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator H-NS; thus the hns gene was mutated in CFT073 (to generate CFT073hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073hns compared to wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic SPATE secreted by UPEC during infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary history of biological entities is recorded within their nucleic acid sequences and can (sometimes) be deciphered by thorough genomic analysis. In this study we sought to gain insights into the diversity and evolution of bacterial and archaeal viruses. Our primary interest was pointed towards those virus groups/families for which comprehensive genomic analysis was not previously possible due to the lack of sufficient amount of genomic data. During the course of this work twenty-five putative proviruses integrated into various prokaryotic genomes were identified, enabling us to undertake a comparative genomics approach. This analysis allowed us to test the previously formulated evolutionary hypotheses and also provided valuable information on the molecular mechanisms behind the genome evolution of the studied virus groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposable elements, transposons, are discrete DNA segments that are able to move or copy themselves from one locus to another within or between their host genome(s) without a requirement for DNA homology. They are abundant residents in virtually all the genomes studied, for instance, the genomic portion of TEs is approximately 3% in Saccharomyces cerevisiae, 45% in humans, and apparently more than 70% in some plant genomes such as maize and barley. Transposons plays essential role in genome evolution, in lateral transfer of antibiotic resistance genes among bacteria and in life cycle of certain viruses such as HIV-1 and bacteriophage Mu. Despite the diversity of transposable elements they all use a fundamentally similar mechanism called transpositional DNA recombination (transposition) for the movement within and between the genomes of their host organisms. The DNA breakage and joining reactions that underlie their transposition are chemically similar in virtually all known transposition systems. The similarity of the reactions is also reflected in the structure and function of the catalyzing enzymes, transposases and integrases. The transposition reactions take place within the context of a transposition machinery, which can be particularly complex, as in the case of the VLP (virus like particle) machinery of retroelements, which in vivo contains RNA or cDNA and a number of element encoded structural and catalytic proteins. Yet, the minimal core machinery required for transposition comprises a multimer of transposase or integrase proteins and their binding sites at the element DNA ends only. Although the chemistry of DNA transposition is fairly well characterized, the components and function of the transposition machinery have been investigated in detail for only a small group of elements. This work focuses on the identification, characterization, and functional studies of the molecular components of the transposition machineries of BARE-1, Hin-Mu and Mu. For BARE-1 and Hin-Mu transpositional activity has not been shown previously, whereas bacteriophage Mu is a general model of transposition. For BARE-1, which is a retroelement of barley (Hordeum vulgare), the protein and DNA components of the functional VLP machinery were identified from cell extracts. In the case of Hin-Mu, which is a Mu-like prophage in Haemophilus influenzae Rd genome, the components of the core machinery (transposase and its binding sites) were characterized and their functionality was studied by using an in vitro methodology developed for Mu. The function of Mu core machinery was studied for its ability to use various DNA substrates: Hin-Mu end specific DNA substrates and Mu end specific hairpin substrates. The hairpin processing reaction by MuA was characterized in detail. New information was gained of all three machineries. The components or their activity required for functional BARE-1 VLP machinery and retrotransposon life cycle were present in vivo and VLP-like structures could be detected. The Hin-Mu core machinery components were identified and shown to be functional. The components of the Mu and Hin-Mu core machineries were partially interchangeable, reflecting both evolutionary conservation and flexibility within the core machineries. The Mu core machinery displayed surprising flexibility in substrate usage, as it was able to utilize Hin-Mu end specific DNA substrates and to process Mu end DNA hairpin substrates. This flexibility may be evolutionarily and mechanistically important.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ectomycorrhizal formation between the host tree, Pinus sylvestris and fungal symbiont, Suillus bovinus was investigated at the molecular level by isolating genes regulating the organization of the actin cytoskeleton in the fungal partner S. bovinus. An Agrobacterium tumefaciens mediated transformation (ATMT) system was developed for the ectomycorrhizal fungi in order to assign specific functions to the cloned molecules. The developed ATMT system was also used to transform a plant pathogenic fungus, Helminthosporium turcicum, to hygromycin B resistance. Small GTPases Cdc42 and Rac1, the regulators of actin cytoskeleton in eukaryotes were isolated from S. bovinus. Sbcdc42 and Sbrac1, are both expressed in vegetative and in the symbiotic hyphae of S. bovinus . Using IIF microscopy, Cdc42 and actin were co-localized at the tips of vegetative hyphae and were visualized in association with the plasma membrane in swollen cells typical to the symbiotic hyphae. These results suggest that the small GTPases Cdc42 may play a significant role in the polarized growth of S. bovinus hyphae and regulate fungal morphogenesis during ectomycorrhiza formation through reorganization of the actin cytoskeleton. The functional equality of Cdc42 was tested in yeast complementation experiments using a Saccharomyces cerevisiae temperature sensitive mutant, cdc42-1ts. The genomic clone of CDC42 was isolated from S. bovinus genomic DNA via specific primers for Cdc42. The analogous S. cerevisiae cdc42 mutations, dominant active G12V and dominant negative D118A, were generated in the Sbcdc42 gene by in-vitro mutagenesis. The ectomycorrhizal fungi, S. bovinus, P. involutus and H. cylindroporum were transformed using ATMT and phleomycin as a selectable marker. PCR screeing suggested that the T-DNA was inserted in all the three fungal genomes but the fate of integration could not be proved by Southern blot analysis. An alternative Agrobacterium strain, AGL-1 and selection marker, hygromycin was used to transform our model fungus S. bovinus. PCR and Southern analysis suggested an improved efficiency of transformation. All the transformed fungal colonies selected for hygromycin gave positives in PCR and the Southerns showed multiple or single copy T-DNA integrations into the S. bovinus genome. Using the same Agrobacterium strain and the selectable marker, a maize pathogen, H. turcicum was also subjected to ATMT. The H. turcicum transformation data suggested the single copy T-DNA integrations into the genome of the screened transformants that further confirms wider applicability of the ATMT. The plasmids carrying the wild-type (pHGCDC42) and the mutated Sbcdc42 alleles (pHGGV; pHGDA) under Agaricus bisporus gpd promoter were constructed in an A. tumefaciens vector. ATMT was used to transform S. bovinus with the plasmids carrying the wild-type and mutated Sbcdc42 alleles. The isolation of Sbcdc42 and Sbrac1 genes and some other functionally related genes from ectomycorrhizal fungus, S. bovinus will form the basis of future work to resolve the signalling pathway leading to ectomycorrhizal symbiosis. The development of ATMT system will be a valuable tool in analysing the exact function of signalling pathway components in ectomycorrhizal symbiosis or in plant pathogenic interactions. The transformation frequency and broad applicability along with the simplicity of T-DNA integration make Agrobacterium a valuable, new and a powerfull tool for targeted and insertional mutagenesis in these plant associated fungi. The developed ATMT systems should therefore make it possible to generate large number of transformants with tagged genes which could then be screened for their specific roles in symbiosis and pathogenecity, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wood decay fungi belonging to the species complex Heterobasidion annosum sensu lato are among the most common and economically important species causing root rot and stem decay in conifers of the northern temperate regions. New infections by these pathogens can be suppressed by tree stump treatments using chemical or biological control agents. In Finland, the corticiaceous fungus Phlebiopsis gigantea has been formulated into a commercial biocontrol agent called Rotstop (Verdera Ltd.). This thesis addresses the ecological impacts of Rotstop biocontrol treatment on the mycoflora of conifer stumps. Locally, fungal communities within Rotstop-treated and untreated stumps were analyzed using a novel method based on DGGE profiling of small subunit ribosomal DNA fragments amplified directly from wood samples. Population analyses for P. gigantea and H. annosum s.l. were conducted to evaluate possible risks associated with local and/or global distribution of the Rotstop strain. Based on molecular community profiling by DGGE, we detected a few individual wood-inhabiting fungal species (OTUs) that seemed to have suffered or benefited from the Rotstop biocontrol treatment. The DGGE analyses also revealed fungal diversity not retrieved by cultivation and some fungal sequence types untypical for decomposing conifer wood. However, statistical analysis of DGGE community profiles obtained from Rotstop-treated and untreated conifer stumps revealed that the Rotstop treatment had not caused a statistically significant reduction in the species diversity of wood-inhabiting fungi within our experimental forest plots. Locally, ISSR genotyping of cultured P. gigantea strains showed that the Rotstop biocontrol strain was capable of surviving up to six years within treated Norway spruce stumps, while in Scots pine stumps it was sooner replaced by successor fungal species. In addition, the spread of resident P. gigantea strains into Rotstop-treated forest stands seemed effective in preventing the formation of genetically monomorphic populations in the short run. On a global scale, we detected a considerable level of genetic differentiation between the interfertile European and North American populations of P. gigantea. These results strongly suggest that local biocontrol strains should be used in order to prevent global spread of P. gigantea and hybrid formation between geographically isolated populations. The population analysis for H. annosum s.l. revealed a collection of Chinese fungal strains that showed a high degree of laboratory fertility with three different allopatric H. annosum s.l. taxa. However, based on the molecular markers, the Chinese strains could be clearly affiliated with the H. parviporum taxonomical cluster, which thus appears to have a continuous distribution range from Europe through southern Siberia to northern China. Keywords: Rotstop, wood decay, DGGE, ISSR fingerprinting, ribosomal DNA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been only recently realized that sexual selection does not end at copulation but that post-copulatory processes are often important in determining the fitness of individuals. In this thesis, I experimentally studied both pre- and post-copulatory sexual selection in the least killifish, Heterandria formosa. I found that this species suffers from severe inbreeding depression in male reproductive behaviour, offspring viability and offspring maturation times. Neither sex showed pre-copulatory inbreeding avoidance but when females mated with their brothers, less sperm were retrieved from their reproductive system compared to the situation when females mated with unrelated males. Whether the difference in sperm numbers is due to female or male effect could not be resolved. Based on theory, females should be more eager to avoid inbreeding than males in this species, because females invest more in their offspring than males do. Inbreeding seems to be an important part of this species biology and the severe inbreeding depression has most likely selected for the evolution of the post-copulatory inbreeding avoidance mechanism that I found. In addition, I studied the effects of polyandry on female reproductive success. When females mated with more than one male, they were more likely to get pregnant. However, I also found a cost of polyandry. The offspring of females mated to four males took longer to reach sexual maturity compared to the offspring of monandrous females. This cost may be explained by parent-offspring conflict over maternal resource allocation. In another experiment, in which within-brood relatedness was manipulated, offspring sizes decreased over time when within-brood relatedness was low. This result is partly in accordance with the kinship theory of genomic imprinting. When relatedness decreases, offspring are expected to be less co-operative and demand fewer resources from their mother, which leads to impaired development. In the last chapter of my thesis, I show that H. formosa males do not prefer large females as in other Poeciliidae species. I suggest that males view smaller females as more profitable mates because those are more likely virgin. In conclusion, I found both pre- and post-copulatory sexual selection to be important factors in determining reproductive success in H. formosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic studies on phylogeography and adaptive divergence in Northern Hemisphere fish species such as three-spined stickleback (Gasterosteus aculeatus) provide an excellent opportunity to investigate genetic mechanisms underlying population differentiation. According to the theory, the process of population differentiation results from a complex interplay between random and deterministic processes as well historical factors. The main scope in this thesis was to study how historical factors like the Pleistocene ice ages have shaped the patterns molecular diversity in three-spined stickleback populations in Europe and how this information could be utilized in the conservation genetic context. Furthermore, identifying footprints of natural selection at the DNA level might be used in identifying genes involved in evolutionary change. Overall, the results from phylogeographic studies indicate that the three-spined stickleback has colonized the Atlantic basin relatively recently but constitutes three major evolutionary lineages in Europe. In addition, the colonization of freshwater appears to result from multiple and independent invasions by the marine conspecifics. Molecular data together with morphology suggest that the most divergent freshwater populations are located in the Balkan Peninsula and these populations deserve a special conservation genetic status without warranting further taxonomical classification. In order to investigate the adaptive divergence in Fennoscandian three-spined stickleback populations several approaches were used. First, sequence variability in the Eda-gene, coding for the number of lateral plates, was concordant with the previously observed global pattern. Full plated allele is in high frequencies among marine populations whereas low plated allele dominates in the freshwater populations. Second, a microsatellite based genome scan identified both indications of balancing and directional selection in the three-spined stickleback genome, i.e. loci with unusually similar or unusually different allele frequencies over populations. The directionally selected loci were mainly associated with the adaptation to freshwater. A follow up study conducting a more detailed analysis in a chromosome region containing a putatively selected gene locus identified a fairly large genomic region affected by natural selection. However, this region contained several gene predictions, all of which might be the actual target of natural selection. All in all, the phylogeographic and adaptive divergence studies indicate that most of the genetic divergence has occurred in the freshwater populations whereas the marine populations have remained relatively uniform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 3prime terminal 1255nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3prime terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.