933 resultados para finite element calculation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone defects in revision knee arthroplasty are often located in load-bearing regions. The goal of this study was to determine whether a physiologic load could be used as an in situ osteogenic signal to the scaffolds filling the bone defects. In order to answer this question, we proposed a novel translation procedure having four steps: (1) determining the mechanical stimulus using finite element method, (2) designing an animal study to measure bone formation spatially and temporally using micro-CT imaging in the scaffold subjected to the estimated mechanical stimulus, (3) identifying bone formation parameters for the loaded and non-loaded cases appearing in a recently developed mathematical model for bone formation in the scaffold and (4) estimating the stiffness and the bone formation in the bone-scaffold construct. With this procedure, we estimated that after 3 years mechanical stimulation increases the bone volume fraction and the stiffness of scaffold by 1.5- and 2.7-fold, respectively, compared to a non-loaded situation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out in the International Center for Numerical Methods in Engineering (CIMNE) –state agency – from February until November 2007. The work within the project Technology innovation in underground construction can be grouped into the following tasks: development of the software for modelling underground excavation based on the discrete element method - the numerical algorithms have been implemented in the computer programs and applied to simulation of excavation using roadheaders and TBM-s -; coupling of the discrete element method with the finite element method; development of the numerical model of rock cutting taking into account of wear of rock cutting tools -this work considers a very important factor influencing effectiveness of underground works -.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study of the main types of coatings and its processes that modern industry commonly apply to prevent to the corrosion due to the environmental effects to energetic market pipelines have been done. Extracting main time and temperature range values, coating heat treatment recreation have been applied to x65 pipelines steel grade samples obtained from a pipe which was formed using UOE forming process. Experimental tensile tests and Charpy V‐Notch Impact test have been carried out for a deeply knowledge of the influence on the steel once this recreations are applied. The Yield Strength and toughness have been improved despite lower values in rupture strain and ductile‐brittle temperature transition have been obtained. Finite Element Method have been applied to simulate the entirely pipe cold bending process to predict the mechanical properties and behaviour of the pipe made from x65 steel grade under different conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose Third generation anatomic total shoulder prostheses offer a wide range of adaptability (size, thickness, retroversion and offset of the humeral head, cervico-diaphyseal angle) in order to reproduce anatomy and biomechanics of the shoulder as normal as possible. The large variability of the implants may also induce malposition. Our goal was to analyse the consequences of a humeral head malposition, which is one of the most frequent placement errors. Material and Methods A 3D finite element model of the glenohumeral joint, including the rotator cuff muscles and the deltoid, was used with the Aequalis anatomic prosthesis. Active abduction was simulated. Three humeral head placements were compared : anatomic positioning (A), 5 mm inferior positioning (B), 5 mm superior positioning (C). The effect of humeral head malposition was evaluated through the following quantities : the range of motion free of impingements, the glenohumeral contact pattern, and the stress within the polyethylene and the cement. Results Inferior positioning (B) of the humeral head produced a superior impingement before 90° of abduction, an inferior eccentric contact point on the glenoid, and 165% increase of cement stress. Superior positioning (C) of the humeral head produced a postero-superior eccentric contact point on the glenoid, 300% increase of glenohumeral contact pressure, 450% increase of polyethylene stress, and 207% increase of cement stress. Conclusion Malposition of the humeral head of anatomic prostheses induces biomechanical consequences that may preclude the glenoid survival. Particular attention must be paid to reproduce the humeral anatomy as normal as possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluid that fills boreholes in crosswell electrical resistivity investigations provides the necessary electrical contact between the electrodes and the rock formation but it is also the source of image artifacts in standard inversions that do not account for the effects of the boreholes. The image distortions can be severe for large resistivity contrasts between the rock formation and borehole fluid and for large borehole diameters. We have carried out 3D finite-element modeling using an unstructured-grid approach to quantify the magnitude of borehole effects for different resistivity contrasts, borehole diameters, and electrode configurations. Relatively common resistivity contrasts of 100:1 and borehole diameters of 10 and 20 cm yielded, for a bipole length of 5 m, apparent resistivity underestimates of approximately 12% and 32% when using AB-MN configurations and apparent resistivity overestimates of approximately 24% and 95% when using AM-BN configurations. Effects are generally more severe at shorter bipole spacings. We report the results obtained by either including or ignoring the boreholes in inversions of 3D field data from a test site in Switzerland, where approximately 10,000 crosswell resistivity-tomography measurements were made across six acquisition planes among four boreholes. Inversions of raw data that ignored the boreholes filled with low-resistivity fluid paradoxically produced high-resistivity artifacts around the boreholes. Including correction factors based on the modeling results fora ID model with and without the boreholes did not markedly improve the images. The only satisfactory approach was to use a 3D inversion code that explicitly incorporated the boreholes in the actual inversion. This new approach yielded an electrical resistivity image that was devoid of artifacts around the boreholes and that correlated well with coincident crosswell radar images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquest projecte consisteix en aplicar el càlcul no lineal en la modelització volumètricanumèrica de l’estructura del sistema de descàrrega d’una columna del claustre de lacatedral de Girona mitjançant el mètode dels elements finits. A la Universitat de Gironas’ha fet diferents estudis del claustre de la catedral de Girona però sempre simulant uncomportament lineal de les característiques dels materials. El programa utilitzat és la versió docent del programa ANSYS disponible al Dept.d’EMCI i l’element emprat ha sigut el SOLID65. Aquest element permet introduircaracterístiques de no linealitat en els models i és adequat per a anàlisi no lineald’elements com la pedra de Girona

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’objectiu d’aquest treball és desenvolupar una metodologia per realitzar l’anàlisiparamètrica de l’assaig de compressió d’un panell de material compost rigiditzat ambtres nervis. En primer lloc és necessari desenvolupar un sistema automatitzat per generar i avaluar el conjunt de parametritzacions. A continuació, s’estudiaran quines variables d’estat són les més adequades per representar el vinclament local, la flexió global, la càrrega crítica de desestabilització i l’índex de fallada en l’anàlisi paramètrica. La modelització amb el mètode dels elements finits serveix per simular l’assaig a compressió del panell. La simulació es realitza mitjançant un càlcul no lineal, per estudiar la desestabilització i els fenòmens no lineals que pateix el panell. L’estudi es complementa amb una anàlisi modal i una anàlisi lineal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reversed shoulder prostheses are increasingly being used for the treatment of glenohumeral arthropathy associated with a deficient rotator cuff. These non-anatomical implants attempt to balance the joint forces by means of a semi-constrained articular surface and a medialised centre of rotation. A finite element model was used to compare a reversed prosthesis with an anatomical implant. Active abduction was simulated from 0 degrees to 150 degrees of elevation. With the anatomical prosthesis, the joint force almost reached the equivalence of body weight. The joint force was half this for the reversed prosthesis. The direction of force was much more vertically aligned for the reverse prosthesis, in the first 90 degrees of abduction. With the reversed prosthesis, abduction was possible without rotator cuff muscles and required 20% less deltoid force to achieve it. This force analysis confirms the potential mechanical advantage of reversed prostheses when rotator cuff muscles are deficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The failure mechanism of a voided CFRP 0-90° cross-ply laminate under tensile loads applied in one direction was studied in this Final Degree Project. For this purpose, voided coupons were manufactured for being tested and a FEA was done. In both investigations, voids were placed in 90º and 0º direction, in order to understand the void location influence. On the one hand, the behaviour of the voided laminates was investigated through a FEM in order to preview the stress distribution within the material. On the other hand, voided specimens where manufactured by applying blowing agent in between the inner layers. These specimens were tested by a quasi-static step wise tensile test where data showing its real behaviour was collected. Specimens were X-rayed after each step of the test in order to investigate the failure mechanism of the composite. Data from the test was studied so that relations such as strength of the laminates, crack density per stress, void length per first crack at the void and void area per first crack at the specimen could be characterized

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El projecte és l’inici de la creació d’un nou prototip per a poder competir la temporada 2008 a la cursa de vehicles de baix consum Shell Eco-Marathon. El principal objectiu és aconseguir un xassís que redueixi, en la mesura del possible, el pes del prototip a la vegada que asseguri una millor rigidesa i millori l’ergonomia de tot el conjunt. Es dissenyarà tota la part estructural de la carrosseria, que serà sotmesa a càlcul mitjançant la tècnica dels elements finits i posteriorment es realitzarà una guia de producció per tal de guiar els membres de l’equip que en realitzin la producció