945 resultados para fiber coupling
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Si-based optoelectronic devices, including stimulated emission from Si diode, 1.3 and 1.5mum SiGe photodetector with quantum structures, 1GHz MOS optical modulator, SOI optical switch matrix and wavelength tunable filter are reviewed in the paper.
Resumo:
An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.
Resumo:
This paper describes the design process and performance of the optimized parallel optical transmission module. Based on 1x12 VCSEL (Vertical Cavity Surface Emitting Laser) array, we designed and fabricated the high speed parallel optical modules. Our parallel optical module contains a 1x12 VCSEL array, a 12 channel CMOS laser driver circuit, a high speed PCB (Printed Circuit Board), a MT fiber connector and a packaging housing. The L-I-V characteristics of the 850nm VCSEL was measured at the operating current 8mA, 3dB frequency bandwidth more than 3GHz and the optical output 1mW. The transmission rate of all 12 channels is 30Gbit/s, with a single channel 2.5Gbit/s. By adopting the integration of the 1x12 VCSEL array and the driver array, we make a high speed PCB (Printed Circuit Board) to provide the optoelectronic chip with the operating voltage and high speed signals current. The LVDS (Low-Voltage Differential Signals) was set as the input signal to achieve better high frequency performance. The active coupling was adopted with a MT connector (8 degrees slant fiber array). We used the Small Form Factor Pluggable (SFP) packaging. With the edge connector, the module could be inserted into the system dispense with bonding process.
Resumo:
We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2 degrees at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.
Resumo:
In this paper, a pressure-gradient fiber laser hydrophone is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as sensing elements. A distributed feedback fiber laser, fixed at the center of the two diaphragms, is elongated or shortened due to the acoustic wave. There are two orifices at the middle of the cylinder. So this structure can work as a pressure-gradient microphone in the acoustic field. Furthermore, the hydrostatic pressure is self-compensated and an ultra-thin dimension is achieved. Theoretical analysis is given based on the electro-acoustic theory. Field trials are carried out to test the performance of the hydrophone. A sensitivity of 100 nm MPa-1 has been achieved. Due to the small dimensions, no directivity is found in the test.
Resumo:
The effects ofdisk flexibility and multistage coupling on the dynamics of bladed disks with and without blade mistuning are investigated. Both free and forced responses are examined using finite element representations of example single and two-stage rotor models. The reported work demonstrates the importance of proper treatment of interstage (stage-to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction in eigenfrequency veering regions. The modified disk-blade modal interactions resulting from interstage-coupling-induced changes in disk flexibility are found to have a significant impact on (a) tuned responses due to excitations passing through eigenfrequency veering regions, and (b) a design's sensitivity to blade mistuning. Hence, the findings in this paper suggest that multistage analyses may be required when excitations are expected to fall in or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be accounted for Conversely, the observed sensitivity to disk flexibility also indicates that the severity of unfavorable structural interblade coupling may be reduced significantly by redesigning the disk(s) and stage-to-stage connectivity. The relatively drastic effects of such modifications illustrated in this work indicate that the design modifications required to alleviate veering-related response problems may be less comprehensive than what might have been expected.
Resumo:
A liquid laser medium with a lifetime of 492 mu s and a fluorescent quantum efficiency of 52.5% has been presented by stably dispersing dimethyl dichorosilane-modified Nd2O3 nanoparticles in dimethylsulfoxide. Its optical properties and mechanism were investigated and explained by fluorescence resonance energy transfer theory. The calculation result shows that the quenching of Nd-III F-4(3/2)-> I-4(11/2) transition via O-H vibrational excitation can be eventually neglected. The main reason is that the silane-coupling agent molecules remove the -OH groups on Nd2O3 nanoparticles and form a protective out layer. (c) 2007 American Institute of Physics.
Resumo:
The authors demonstrate that the Rashba spin-orbit interaction in low-dimensional semiconductors can enhance or reduce the electron-phonon scattering rate by as much as 25%. The underlying mechanism is that the electron-phonon scattering phase space for the upper (lower) Rashba band is significantly enhanced (suppressed) by the spin-orbit interaction. While the scattering time decreases for the upper level, the mobility of the level increases due to an additional term in the electron velocity. (C) 2007 American Institute of Physics.
Resumo:
Starting from the modeling of isolated ions and ion-clusters, a closed form rate and power evolution equations for high-concentration erbium-doped fiber amplifiers are constructed. Based on the equations, the effects of the fraction of ion-clusters in total ions and the number of ions per cluster on the performance of high-concentration erbium-doped fiber amplifiers are analyzed numerically. The results show that the presence of the ion-clusters deteriorates amplifier performance, such as the signal power, signal gain, the threshold pump power for zero gain, saturated signal gain, and the maximum gain efficiency, etc. The optimum fiber length or other parameters should be modified with the ion-clusters being taken into account for the amplifiers to achieve a better performance. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Solutions for fiber-optical parametric amplifiers (FOPAs) with dispersion fluctuations are derived using matrix operators. On the basis of the propagation matrix product and the hybrid genetic algorithm, we have optimized and compared single- and dual-pump FOPAs with zero-dispersion-wavelength variations. The simulations prove that the design of FOPAs involves multimodal function optimization problems. The numerical results show that dual-pump FOPAs are highly sensitive to dispersion fluctuations whereas dispersion variations have less impact on the gain of single-pump FOPAs. To increase signal gain and reduce ripple, dual-pump FOPAs, instead of single-pump FOPAs, have to be carefully optimized with a suitable multisegment fiber structure rather than a one-segment fiber structure. The different combinations of multisegment fibers can provide highly different gain properties. The increase in gain is at the cost of the ripple.
Resumo:
A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.