936 resultados para existing
Resumo:
Sonic Loom is a purpose built classroom tool for teachers and students of drama that will enable them to explore the use of music in live performance in theory and practice. It’s intended as a resource for drama classrooms, to encourage communication and exchange about the way music works on us so we can find new ways we can make it work for us. Working to consciously attend to music and how it’s used, particularly in cinema (as a popular way in to styles of western theatre and live performance) will allow students and teachers to use music in more subtle and complex ways an aid to narrative in performance. Sonic Loom encourages active listening, (aided but not encumbered by traditional musicology) so students (and teachers) can develop a ‘critical ear’ in the transformation and adaptation of music for their own artistic purposes, whether it’s soundtracking existing scene work, or acting as a pre-text for scenes which have yet to be created.
Resumo:
Uncooperative iris identification systems at a distance suffer from poor resolution of the captured iris images, which significantly degrades iris recognition performance. Superresolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, all existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values. This paper considers transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. This is the first paper to investigate the possibility of feature domain super-resolution for iris recognition, and experiments confirm the validity of the proposed approach.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations. However, people have limited knowledge on this complex topic. In this research, 1) the impact of traffic oscillations on freeway crash occurrences has been measured using the matched case-control design. The results consistently reveal that oscillations have a more significant impact on freeway safety than the average traffic states. 2) Wavelet Transform has been adopted to locate oscillations' origins and measure their characteristics along their propagation paths using vehicle trajectory data. 3) Lane changing maneuver's impact on the immediate follower is measured and modeled. The knowledge and the new models generated from this study could provide better understanding on fundamentals of congested traffic; enable improvements to existing traffic control strategies and freeway crash countermeasures; and instigate people to develop new operational strategies with the objective of reducing the negative effects of oscillatory driving.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.
Resumo:
Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.
Resumo:
This protocol represents an attempt to assist in the instruction of teamwork assessment for first-year students across QUT. We anticipate that teaching staff will view this protocol as a generic resource in teamwork instruction, processes and evaluation. Teamwork has been acknowledged as a problematic practice at QUT while existing predominantly in importance amongst graduate capabilities for all students at this institution. This protocol is not an extensive document on the complexities and dynamics of teamwork processes, but instead presents itself as a set of best practice guidelines and recommendations to assist in team design, development, management, support and assessment. It is recommended that this protocol be progressively implemented across QUT, not only to attain teamwork teaching consistency, but to address and deal with the misconceptions and conflict around the importance of the teamwork experience. The authors acknowledge the extensive input and contributions from a Teamwork Steering Committee selected from academic staff and administrative members across the institution. As well, we welcome feedback and suggestions to both fine tune and make inclusive those strategies that staff believe add to optimal teamwork outcomes.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha-1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 µg N2O-N m-2 h 1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.
Resumo:
The extant literature suggests that community participation is an important ingredient for the successful delivery of post-disaster housing reconstruction projects. Even though policy-makers, international funding bodies and non-governmental organisations broadly appreciate the value of community participation, post-disaster reconstruction practices systematically fail to follow, or align with, existing policy statements. Research into past experiences has led many authors to argue that post-disaster reconstruction is the least successful physically visible arena of international cooperation. Why is the principle of community participation not evident in the veracity of reconstructions already carried out on the ground? This paper discusses and develops the concepts of, and challenges to, community participation and the subsequent negative and positive effects on post-disaster reconstruction projects outcomes.
Resumo:
Without the virtually free services of nature like clean air and water, humans would not last long. Natural systems can be incorporated in existing urban structures or spaces to add public amenity, mitigate the heat island effect, reduce pollution, add oxygen, and ensure water, electricity and food security in urban areas. Th ere are many eco-solutions that could radically reduce resource consumption and pollution and even provide surplus ecosystem services in the built environment at little or no operational cost, if adequately supported by design. Th is paper is the fi rst of a two part paper that explains what eco-services are, then provides examples of how design can generate natural as well as social capital. Using examples of actual and notional solutions, both papers set out to challenge designers to ‘think again’, and invent ways of creating net positive environmental gains through built environment design.
Resumo:
Without the virtually free services of nature like clean air and water, humans would not last long. Natural systems can be incorporated in existing urban structures or spaces to add public amenity, mitigate the heat island eff ect, reduce pollution, add oxygen, and ensure water, electricity and food security in urban areas. Th ere are many eco-solutions that could radically reduce resource consumption and pollution and even provide surplus ecosystem services in the built environment at little or no operational cost, if adequately supported by design. Th is is the second part of a two part paper that explains what eco-services are, then provides examples of how design can generate natural as well as social capital. Using examples of actual and notional solutions, both papers set out to challenge designers to ‘think again’, and invent ways of creating net positive environmental gains through built environment design.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.