914 resultados para elasticity modulus
Resumo:
An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.
Resumo:
We propose a model for concentrated emulsions based on the speculation that a macroscopic shear strain does not produce an affine deformation in the randomly close-packed droplet structure. The model yields an anomalous contribution to the complex dynamic shear modulus that varies as the square root of frequency. We test this prediction using a novel light scattering technique to measure the dynamic shear modulus, and directly observe the predicted behavior over six decades of frequency and a wide range of volume fractions.
Resumo:
Dielectric properties of potassium titanyl phosphate have been investigated as a function of thickness and frequency, as well as annealing treatment under various atmospheres. The low frequency dielectric constant of KTP crystals is shown to depend upon the sample thickness, and this feature is attributed to the existence of surface layers. The frequency-dependent dielectric response of KTP exhibits a non-Debye type relaxation, with a distribution of relaxation times. The dielectric behavior of KTP samples annealed in various atmospheres shows that the low frequency dielectric constant is influenced by the contribution from the space charge layers. Prolonged annealing of the samples leads to a surface degradation, resulting in the formation of a surface layer of lower dielectric constant. This surface degradation is least when annealed in the presence of dry oxygen. From the analysis of the dielectric data using complex electric modulus, alpha(m) has been evaluated for the virgin and annealed samples. (C) 1996 American Institute of Physics.
Resumo:
The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.
Resumo:
Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.
Resumo:
In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.
Resumo:
The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.
Resumo:
Microstructural stability of nanocrystalline Ni-1.5wt.%P alloy with an initial grain size of 3 nm processed by pulsed electrodeposition was studied using differential scanning calorimetry (DSC) and annealing. Microstructural characterization suggests that the observed exothermic peak during heating in DSC is related to both concurrent grain growth and Ni3P formation. Nanoindentation on samples with grain sizes from 3 to 50 nm revealed a breakdown in Hall-Petch strengthening in nano Ni-P alloy at grain sizes <= 10 nm, consistent with some previous observations. It is concluded that there is a grain boundary weakening regime for grain sizes < 10 nm, based on analysis which show that the data cannot be rationalized in terms of microstrain relaxation, variation in elastic modulus, texture evolution and duplex structure formation.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.
Resumo:
Lamination-dependent shear corrective terms in the analysis of bending of laminated plates are derived from a priori assumed linear thicknesswise distributions for gradients of transverse shear stresses by using CLPT inplane stresses in the two in-plane equilibrium equations of elasticity in each ply. In the development of a general model for angle-ply laminated plates, special cases like cylindrical bending of laminates in either direction, symmetric laminates, cross-ply laminates, antisymmetric angle-ply laminates, homogeneous plates are taken into consideration. Adding these corrective terms to the assumed displacements in (i) Classical Laminate Plate Theory (CLPT) and (ii) Classical Laminate Shear Deformation Theory (CLSDT), two new refined lamination-dependent shear deformation models are developed. Closed form solutions from these models are obtained for antisymmetric angle-ply laminates under sinusoidal load for a type of simply supported boundary conditions. Results obtained from the present models and also from Ren's model (1987) are compared with each other.
Resumo:
Lamination-dependent shear corrective terms in the analysis of flexure of laminates are derived from a priori assumed linear thicknesswise distributions for gradients of transverse shear stresses and using them in the two in-plane equilibrium equations of elasticity in each ply. Adding these corrective terms to (i) Classical Laminate Plate Theory (CLPT) displacements and (ii) Classical Laminate Shear Deformation Theory (CLSDT) displacements, four new refined lamination-dependent shear deformation models for angle-ply laminates are developed. Performance of these models is evaluated by comparing the results from these models with those from exact elasticity solutions for antisymmetric 2-ply laminates and for 4-ply [15/-15](s) laminates. In general, the model with shear corrective terms based on CLPT and added to CLSDT displacements is sufficient and predicts good estimates, both qualitatively and quantitatively, for all displacements and stresses.