927 resultados para disc jockeys
Resumo:
We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse-mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and the low- and high-frequency flickering components. The long-term variability responsible for the ""low-brightness`` and ""high-brightness`` states is explained in terms of the response of a viscous disk to changes of 20%-50% in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and they are similarly interpreted as manifestations of a tidally induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady light aside from the broad brightness distribution of a roughly steady-state disk. The arcs account for 25% of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10 degrees +/- 3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.
Resumo:
We present a map of the spiral structure of the Galaxy, as traced by molecular carbon monosulphide (CS) emission associated with IRAS sources which are believed to be compact H II regions. The CS line velocities are used to determine the kinematic distances of the sources in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical H II regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The study of the spiral structure is complemented with other tracers: open clusters, Cepheids, methanol masers and H II regions. The well-defined spiral arms are seen to be confined inside the corotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (four epicycle oscillations in one turn around the galactic centre). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inwards curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky. The observed arms are interpreted in terms of perturbations similar to grooves in the gravitational potential of the disc, produced by crowding of stellar orbits.
Resumo:
We present two-dimensional stellar and gaseous kinematics of the inner 120 x 250 pc2 of the LINER/Seyfert 1 galaxy M81, from optical spectra obtained with the Gemini Multi-Object Spectrograph (GMOS) integral field spectrograph on the Gemini-North telescope at a spatial resolution of approximate to 10 pc. The stellar velocity field shows circular rotation and, overall, is very similar to the published large-scale velocity field, but deviations are observed close to the minor axis which can be attributed to stellar motions possibly associated with a nuclear bar. The stellar velocity dispersion of the bulge is 162 +/- 15 km s-1, in good agreement with previous measurements and leading to a black hole mass of M(BH) = 5.5+3.6(-2.0) x 107 M(circle dot) based on the M(BH)-Sigma relationship. The gas kinematics is dominated by non-circular motions and the subtraction of the stellar velocity field reveals blueshifts of approximate to-100 km s-1 on the far side of the galaxy and a few redshifts on the near side. These characteristics can be interpreted in terms of streaming towards the centre if the gas is in the plane. On the basis of the observed velocities and geometry of the flow, we estimate a mass inflow rate in ionized gas of approximate to 4.0 x 10-3 M(circle dot) yr-1, which is of the order of the accretion rate necessary to power the LINER nucleus of M81. We have also applied the technique of principal component analysis (PCA) to our data, which reveals the presence of a rotating nuclear gas disc within approximate to 50 pc from the nucleus and a compact outflow, approximately perpendicular to the disc. The PCA combined with the observed gas velocity field shows that the nuclear disc is being fed by gas circulating in the galaxy plane. The presence of the outflow is supported by a compact jet seen in radio observations at a similar orientation, as well as by an enhancement of the [O i]/H alpha line ratio, probably resulting from shock excitation of the circumnuclear gas by the radio jet. With these observations we are thus resolving both the feeding - via the nuclear disc and observed gas inflow, and the feedback - via the outflow, around the low-luminosity active nucleus of M81.
Resumo:
The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.
Resumo:
The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.
Resumo:
We used the H i data from the LAB Survey to map the ring-shaped gap in H i density that lies slightly outside the solar circle. Adopting R(0) = 7.5 kpc, we find an average gap radius of 8.3 kpc and an average gap width of 0.8 kpc. The characteristics of the H i gap correspond closely to the expected ones, as predicted by theory and by numerical simulations of the gas flow near the corotation resonance.
Resumo:
The Hyades stream has long been thought to be a dispersed vestige of the Hyades cluster. However, recent analyses of the parallax distribution, of the mass function, and of the action-space distribution of stream stars have shown it to be rather composed of orbits trapped at a resonance of a density disturbance. This resonant scenario should leave a clearly different signature in the element abundances of stream stars than the dispersed cluster scenario, since the Hyades cluster is chemically homogeneous. Here, we study the metallicity as well as the element abundances of Li, Na, Mg, Fe, Zr, Ba, La, Ce, Nd and Eu for a random sample of stars belonging to the Hyades stream, and compare them with those of stars from the Hyades cluster. From this analysis: (i) we independently confirm that the Hyades stream cannot be solely composed of stars originating in the Hyades cluster; (ii) we show that some stars (namely 2/21) from the Hyades stream nevertheless have abundances compatible with an origin in the cluster; (iii) we emphasize that the use of Li as a chemical tag of the cluster origin of main-sequence stars is very efficient in the range 5500 K <= T(eff) <= 6200 K, since the Li sequence in the Hyades cluster is very tight, while at the same time spanning a large abundance range; (iv) we show that, while this evaporated population has a metallicity excess of similar to 0.2 dex with respect to the local thin-disc population, identical to that of the Hyades cluster, the remainder of the Hyades stream population has still a metallicity excess of similar to 0.06-0.15 dex, consistent with an origin in the inner Galaxy and (v) we show that the Hyades stream can be interpreted as an inner 4:1 resonance of the spiral pattern: this then also reproduces an orbital family compatible with the Sirius stream, and places the origin of the Hyades stream up to 1 kpc inwards from the solar radius, which might explain the observed metallicity excess of the stream population.
Resumo:
The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.
Resumo:
In this work, considering the impact of a supernova remnant (SNR) with a neutral magnetized cloud we derived analytically a set of conditions that are favourable for driving gravitational instability in the cloud and thus star formation. Using these conditions, we have built diagrams of the SNR radius, R(SNR), versus the initial cloud density, n(c), that constrain a domain in the parameter space where star formation is allowed. This work is an extension to previous study performed without considering magnetic fields (Melioli et al. 2006, hereafter Paper I). The diagrams are also tested with fully three-dimensional MHD radiative cooling simulations involving a SNR and a self-gravitating cloud and we find that the numerical analysis is consistent with the results predicted by the diagrams. While the inclusion of a homogeneous magnetic field approximately perpendicular to the impact velocity of the SNR with an intensity similar to 1 mu G within the cloud results only a small shrinking of the star formation zone in the diagram relative to that without magnetic field, a larger magnetic field (similar to 10 mu G) causes a significant shrinking, as expected. Though derived from simple analytical considerations these diagrams provide a useful tool for identifying sites where star formation could be triggered by the impact of a supernova blast wave. Applications of them to a few regions of our own Galaxy (e.g. the large CO shell in the direction of Cassiopeia, and the Edge Cloud 2 in the direction of the Scorpious constellation) have revealed that star formation in those sites could have been triggered by shock waves from SNRs for specific values of the initial neutral cloud density and the SNR radius. Finally, we have evaluated the effective star formation efficiency for this sort of interaction and found that it is generally smaller than the observed values in our own Galaxy (SFE similar to 0.01-0.3). This result is consistent with previous work in the literature and also suggests that the mechanism presently investigated, though very powerful to drive structure formation, supersonic turbulence and eventually, local star formation, does not seem to be sufficient to drive global star formation in normal star-forming galaxies, not even when the magnetic field in the neutral clouds is neglected.
Resumo:
We describe a new spectroscopic technique for measuring radial metallicity gradients out to large galactocentric radii. We use the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck telescope and the galaxy spectrum extraction technique of Proctor et al. We also make use of the metallicity sensitive near-infrared Calcium ii triplet (CaT) features together with single stellar population models to obtain metallicities. Our technique is applied as a pilot study to a sample of three relatively nearby (< 30 Mpc) intermediate-mass to massive early-type galaxies. Results are compared with previous literature inner region values and generally show good agreement. We also include a comparison with profiles from dissipational disc-disc major merger simulations. Based on our new extended metallicity gradients combined with other observational evidence and theoretical predictions, we discuss possible formation scenarios for the galaxies in our sample. The limitations of our new technique are also discussed.
Resumo:
The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of alpha-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.
Resumo:
As part of a large survey of halo and thick disc stars, we found one halo star, HD106038, exceptionally overabundant in beryllium. In spite of its low metallicity, [Fe/H] = -1.26, the star has log(Be/H) = -10.60, which is similar to the solar meteoritic abundance, log(Be/H)=-10.58. This abundance is more than 10 times higher the abundance of stars with similar metallicity and cannot be explained by models of chemical evolution of the Galaxy that include the standard theory of cosmic ray spallation. No other halo star exhibiting such a beryllium overabundance is known. In addition, overabundances of Li, Si, Ni, Y and Ba are also observed. We suggest that all these chemical peculiarities, excepting the Ba abundance, can be simultaneously explained if the star was formed in the vicinity of a hypernova.
Resumo:
The morphology and phylogenetic relationships of a new genus and two new species of Neotropical freshwater stingrays, family Potamotrygonidae, are investigated and described in detail. The new genus, Heliotrygon, n. gen., and its two new species, Heliotrygon gomesi, n. sp. (type-species) and Heliotrygon rosai, n. sp., are compared to all genera and species of potamotrygonids, based on revisions in progress. Some of the derived features of Heliotrygon include its unique disc proportions (disc highly circular, convex anteriorly at snout region, its width and length very similar), extreme subdivision of suborbital canal (forming a complex honeycomb-like pattern anterolaterally on disc), stout and triangular pelvic girdle, extremely reduced caudal sting, basibranchial copula with very slender and acute anterior extension, and precerebral and frontoparietal fontanellae of about equal width, tapering very little posteriorly. Both new species can be distinguished by their unique color patterns: Heliotrygon gomesi is uniform gray to light tan or brownish dorsally, without distinct patterns, whereas Heliotrygon rosai is characterized by numerous white to creamy-white vermiculate markings over a light brown, tan or gray background color. Additional proportional characters that may further distinguish both species are also discussed. Morphological descriptions are provided for dermal denticles, ventral lateral-line canals, skeleton, and cranial, hyoid and mandibular muscles of Heliotrygon, which clearly corroborate it as the sister group of Paratrygon. Both genera share numerous derived features of the ventral lateral-line canals, neurocranium, scapulocoracoid, pectoral basals, clasper morphology, and specific patterns of the adductor mandibulae and spiracularis medialis muscles. Potamotrygon and Plesiotrygon are demonstrated to share derived characters of their ventral lateral-line canals, in addition to the presence of angular cartilages. Our morphological phylogeny is further corroborated by a molecular phylogenetic analysis of cytochrome b based on four sequences (637 base pairs in length), representing two distinct haplotypes for Heliotrygon gomesi. Parsimony analysis produced a single most parsimonious tree revealing Heliotrygon and Paratrygon as sister taxa (boot-strap proportion of 70%), which together are the sister group to a clade including Plesiotrygon and species of Potamotrygon. These unusual stingrays highlight that potamotrygonid diversity, both in terms of species composition and undetected morphological and molecular patterns, is still poorly known.
Resumo:
A new species of Neotropical freshwater stingray, family Potamotrygonidae, is described from the Rio Nanay in the upper Rio Amazonas basin of Peru. Potamotrygon tigrina, n. sp., is easily distinguished from all congeners by its conspicuous dorsal disc coloration, composed of bright yellow to orange vermiculations strongly interwoven with a dark-brown to deep-black background. Additional features that in combination diagnose P. tigrina, n. sp., include the presence of a single angular cartilage, low and not closely grouped dorsal tail spines, and coloration of tail composed of relatively wide and alternating bands of creamy white and dark brown to black. Potamotrygon tigrina is closely related to Potamotrygon schroederi Fernandez-Yepez, 1958, which occurs in the Rio Negro (Brazil) and Rio Orinoco (Venezuela, Colombia). Both species are very similar in proportions and counts, and share features hypothesized to be derived within Potamotrygonidae, related to their specific angular cartilage morphology, distal tail color, dorsal tail-spine pattern, and ventral lateral-line system. To further substantiate the description of P. tigrina, n. sp., we provide a redescription of P. schroederi based on material from the Rio Negro (Brazil) and Rio Orinoco (Venezuela). Specimens from the two basins differ in number of vertebral centra and slightly in size and frequency of rosettes on dorsal disc, distinctions that presently do not warrant their specific separation. Potamotrygon tigrina is frequently commercialized in the international aquarium trade but virtually nothing is known of its biology or conservation status.
Resumo:
CD95 (Fas/Apo-1)-mediated apoptosis was shown to occur through two distinct pathways. One involves a direct activation of caspase-3 by large amounts of caspase-8 generated at the DISC (Type I cells). The other is related to the cleavage of Bid by low concentration of caspase-8, leading to the release of cytochrome c from mitochondria and the activation of caspase-3 by the cytochrome c/APAF-1/caspase-9 apoptosome (Type 11 cells). It is also known that the protein synthesis inhibitor cycloheximide (CHX) sensitizes Type I cells to CD95-mediated apoptosis, but it remains contradictory whether this effect also occurs in Type II cells. Here, we show that sub-lethal doses of CHX render both Type I and Type II cells sensitive to the apoptogenic effect of anti-CD95 antibodies but not to chemotherapeutic drugs. Moreover, Bcl-2-positive Type II cells become strongly sensitive to CD95-mediated apoptosis by the addition of CHX to the cell culture. This is not the result of a restraint of the anti-apoptotic effect of Bcl-2 at the mitochondrial level since CHX-treated Type II cells still retain their resistance to chemotherapeutic drugs. Therefore, CHX treatment is granting the CD95-mediated pathway the ability to bypass the mitochondria requirement to apoptosis, much alike to what is observed in Type I cells. (c) 2007 Elsevier Inc. All rights reserved.